Skip to main content
Log in

Model systems for hydrophobic interactions: Volumes and heat capacities ofn-alkoxyethanols in water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The densities and heat capacities of the first four members of the 2-n-alkoxyethanols were measured in water over the whole mole fraction range with a flow densimeter and a flow microcalorimeter. The methoxy and n-propoxy homologs were studied at 25°C, ethoxyethanol at 19, 25, and 40C, andn-butoxyethanol at 4, 10, 25, 40, and 55°C. While methoxyethanol behaves as a fairly typical polar nonelectrolyte in water,n-butoxyethanol shows trends in the concentration dependence which resemble micellization; some pseudo-microphase transition occurs at about 0.02 mole fraction, and this transition concentration decreases with increasing temperature. There is no simple relationship between this phenomenon and the existence of a lower critical solution temperature at 49°C since the sharpness of the thermodynamic changes is maximum at the lowest temperature and at 55°C the apparent molal quantities on both sides of the two-phase region appear to fall on the same continuous curve. In the region prior to the pseudo-microphase separation the apparent and partial molal heat capacities decrease regularly but beyond approximately 0.01 mole fraction increase sharply to a maximum, suggesting some type of pre-association. The apparent molal heat capacity of water in the binary solutions is larger than the molar heat capacity of water over the whole mole fraction range. The present data seem to be consistent with a clathrate model for hydrophobic hydration and interactions with these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. E. Desnoyers, O. Kiyohara, and G. Perron,Adv. Chem. Ser. 155, 274 (1976).

    Google Scholar 

  2. C. de Visser, G. Perron, and J. E. Desnoyers,J. Am. Chem. Soc. 18, 5894, (1977).

    Google Scholar 

  3. C. de Visser, G. Perron, and J. E. Desnoyers,Can. J. Chem. 55, 586 (1977).

    Google Scholar 

  4. G. M. Musbally, G. Perron, and J. E. Desnoyers,J. Colloid Interface Sci. 48, 494 (1974).

    Google Scholar 

  5. P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  6. P. Picker, P. A. Leduc, P. R. Philip, and J. E. Desnoyers,J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  7. J. E. Desnoyers, C. de Visser, G. Perron, and P. Picker,J. Solution Chem. 5, 605 (1976).

    Google Scholar 

  8. G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

  9. H. F. Stimson,Am. J. Phys. 23, 614 (1955).

    Google Scholar 

  10. L. Cox and L. H. Cretcher,J. Am. Chem. Soc. 48, 451 (1926).

    Google Scholar 

  11. G. Poppe,Bull. Soc. Chim. Belg. 44, 640 (1935).

    Google Scholar 

  12. N. Chakhovskoy,Bull. Soc. Chim. Belg. 65, 476 (1956).

    Google Scholar 

  13. G. Schneider and O. Wilhelm,Z. Phys. Chem. (Frankfurt) 80, 219 (1959).

    Google Scholar 

  14. C. M. Ellis,J. Chem. Educ. 44, 405 (1967).

    Google Scholar 

  15. Von Y. Onken,Z. Elektrochem. 63, 321 (1959).

    Google Scholar 

  16. N. Chakhovskoy, R. H. Martin, and R. Van Wechel,Bull. Soc. Chim. Belg. 65, 453 (1956).

    Google Scholar 

  17. G. Scatchard and G. M. Wilson,J. Am. Chem. Soc. 86, 133 (1964).

    Google Scholar 

  18. K. Y. Chu and A. R. Thompson,J. Chem. Eng. Data. 5, 147 (1960).

    Google Scholar 

  19. L. McKinley and A. Nibarger,J. Am. Chem. Soc. 61, 373 (1939).

    Google Scholar 

  20. K. Kusano, J. Suurkuusk, and I. Wadsö,J. Chem. Thermodyn. 5, 757 (1973).

    Google Scholar 

  21. P. Picker, J. L. Fortier, M. A. Simard, and C. Jolicoeur, in preparation.

  22. F. Franks and D. S. Reid, inWater A Comprehensive Treatise, F. Franks, ed., Vol. 2, Plenum Press, New York, (1973), Chap. 5.

    Google Scholar 

  23. G. Perron, N. Desrosiers, and J. E. Desnoyers,Can. J. Chem. 54, 2163 (1976).

    Google Scholar 

  24. O. Kiyohara, G. Perron, and J. E. Desnoyers,Can. J. Chem. 53, 3263 (1975).

    Google Scholar 

  25. O. Kiyohara, G. Perron, and J. E. Desnoyers,Can. J. Chem. 53, 2591 (1975).

    Google Scholar 

  26. C. de Visser, G. Perron, J. E. Desnoyers, W. J. M. Heuvelsland, and G. Somsen,J. Chem. Eng. Data 22, 74 (1977).

    Google Scholar 

  27. G. Roux, G. Perron, and J. E. Desnoyers, in preparation.

  28. G. Roux, G. Perron, and J. E. Desnoyers,J. Phys. Chem. 82, 966 (1978).

    Google Scholar 

  29. G. Roux, G. Perron, and J. E. Desnoyers, unpublished results.

  30. Micellization, Solubilization, and Microemulsions, K. L. Mittal, ed., Vols. 1 and 2 (Plenum Press, New York, 1977).

    Google Scholar 

  31. C. de Visser, W. J. M. Heuvelsland, L. A. Dunn, and G. Somsen,J. Chem. Soc. Faraday Trans. 1,74, 1159 (1978).

    Google Scholar 

  32. M. J. Blandamer, D. E. Clark, N. J. Hidden, and M. C. R. Symons,Trans. Faraday Soc. 64, 2691 (1968).

    Google Scholar 

  33. R. J. Fanning and P. Kruus,Can. J. Chem. 48, 2052 (1970).

    Google Scholar 

  34. K. Tamura, M. Maekawa, and T. Yasunaga,J. Phys. Chem. 81, 2122 (1977).

    Google Scholar 

  35. N. Muller,J. Magn. Reson. 28, 203 (1977).

    Google Scholar 

  36. K. Iwasaki and T. Fujiyama,J. Phys. Chem. 81, 1908 (1977).

    Google Scholar 

  37. S. Harada, T. Nakajima, T. Komatsu, and T. Nakagama,J. Solution Chem. 7, 463 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roux, G., Perron, G. & Desnoyers, J.E. Model systems for hydrophobic interactions: Volumes and heat capacities ofn-alkoxyethanols in water. J Solution Chem 7, 639–654 (1978). https://doi.org/10.1007/BF00652015

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00652015

Key words

Navigation