Skip to main content
Log in

Enthalpies of solution and solvation of amides in N,N-dimethylformamide: Application of the random contact point approach

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Calorimetrically determined molar enthalpies of solution at infinite dilution in N,N-dimethylformamide and densities of several amides at 25°C are reported. Some of the enthalpies are combined with literature data for enthalpies of vaporization to obtain molar enthalpies of solvation. Relations are found between the enthalpies of solution and the size, and between these enthalpies and the enthalpic pair interaction coefficients of the solute molecules. These relations are quantified by an extension of the random contact point approach. This additivity scheme is also applied to enthalpies of solvation, vaporization and cavity formation. With this approach thermodynamic quantities of solution, solvation, vaporization, and pair interaction of different solutes and solvents are correlated with a single consistent set of group interaction parameters. In addition, the random contact point model provides a simple method to calculate thermodynamics of cavity formation which appear to be as reliable as those of the much more complicated scaled particle theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. C. Kresheck and I. M. Klotz,Biochemistry 8, 8 (1969).

    Google Scholar 

  2. O. D. Bonner, J. M. Bednarek, and R. Arisman,J. Am. Chem. Soc. 99, 2898 (1977).

    Google Scholar 

  3. H. E. Kent, T. H. Lilley, P. D. Milburn, M. Bloemendal, and G. Somsem,J. Solution Chem. 14, 101 (1985).

    Google Scholar 

  4. M. Bloemendal and G. Somsem,J. Solution Chem. 12, 83 (1983);ibid 13, 281 (1984);J. Chem Thermodyn. 19, 1 (1987).

    Google Scholar 

  5. M. Bloemendal, A. H. Sijpkes and G. Somsem,J. Solution Chem. 15, 81 (1986).

    Google Scholar 

  6. A. Ben-Naim and Y. Marcus,J. Chem. Phys. 81, 2016 (1984). This gives references to earlier studies.

    Google Scholar 

  7. A. Ben-Naim, inSolvation Thermodynamics, (Plenum, New York, 1988, in press).

    Google Scholar 

  8. I. Wadsö,Acta Chem. Scand. 19, 1979 (1965).

    Google Scholar 

  9. P. Starzewski, I. Wadsö, and W. Zielenkiewicz,J. Chem. Thermodyn. 16, 331 (1984).

    Google Scholar 

  10. G. Barone, G. Castronuovo, G. Della Gatta, V. Elia, and A. Ionnone,Fluid Phase Equil. 21, 157 (1985).

    Google Scholar 

  11. H. Reiss, H. L. Frisch, and J. L. Lebowitz,J. Chem. Phys. 31, 369 (1959).

    Google Scholar 

  12. H. Reiss,Adv. Chem. Phy. 9, 1 (1964). This give references to earlier studies.

    Google Scholar 

  13. R. A. Pierotti,J. Phys. Chem. 69, 281 (1965).

    Google Scholar 

  14. N. Desrosiers and J. E. Desnoyers,Can. J. Chem. 54, 3800 (1976).

    Google Scholar 

  15. N. Brückl and J. I. Kim,Z. Phys. Chem. N. F. 126, 133 (1981).

    Google Scholar 

  16. R. W. Balk and G. Somsen,J. Chem. Soc. Faraday Trans. I,82, 933 (1986).

    Google Scholar 

  17. C. de Visser, E. van Netten, and G. Somsen,Electrochim. Acta,21, 97 (1976).

    Google Scholar 

  18. A. C. Rouw and G. Somsen,J. Chem. Soc. Faraday Trans. I. 78, 3397 (1982).

    Google Scholar 

  19. P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  20. H. C. Zegers and G. Somsen,J. Chem. Thermodyn. 16, 225 (1984).

    Google Scholar 

  21. C. de Visser, W. J. M. Heuvelsland, L. A. Dunn and G. Somsen,J. Chem. Soc. Faraday Trans. I 74, 1159 (1978).

    Google Scholar 

  22. C. de Visser and G. Somsen,J. Solution Chem. 8, 593 (1979).

    Google Scholar 

  23. H. Z. Zegers and G. Somsen,Fluid Phase Equil. 18, 299 (1984).

    Google Scholar 

  24. J. N. Spencer, R. C. Garrett, F. J. Mayer, J. E. Merkle, C. R. Powell, M. T. Tran, and S. K. Berger,Can. J. Chem. 58, 1372 (1980).

    Google Scholar 

  25. J. N. Spencer, S. K. Berger, C. R. Powell, B. D. Henning, G. S. Furman, M. W. Loffredo, E. M. Rydberg, R. A. Neubert, C. E. Shoop, and D. N. Blauch,J. Phys. Chem. 85, 1236 (1981).

    Google Scholar 

  26. G. Della Gatta, G. Barone, and V. Elia,J. Solution Chem. 15, 157 (1986).

    Google Scholar 

  27. J. M. Corkill, J. F. Goodman, and J. R. Tate,Trans. Faraday Soc. 65, 1472 (1969).

    Google Scholar 

  28. J. Konicek and I. Wadsö,Acta Chem. Scand. 25, 1541 (1971).

    Google Scholar 

  29. M. Bloemendal and G. Somson,J. Solution Chem. accepted.

  30. M. Bloemendal and Y. Marcus,AIChE J. 33, in the press (1987).

  31. A. Bondi,J. Phys. Chem. 68, 441 (1964).

    Google Scholar 

  32. R. Gopal and S. A. Rizoi,J. Ind. Chem. Soc. 43, 179 (1966).

    Google Scholar 

  33. F. Kawaizumi, M. Ohno, and Y. Miyahara,Bull. Chem. Soc. Japan 50, 2229 (1977).

    Google Scholar 

  34. A. A. Miroshnichenko,Zh. Prikl. Khim. 52, 2116 (1979).

    Google Scholar 

  35. M. Sukurai and T. Nakagawa,J. Chem. Thermodyn. 16, 171 (1984).

    Google Scholar 

  36. M. Bloemendal and G. Somson,J. Am. Chem. Soc. 107, 3426 (1985).

    Google Scholar 

  37. A. C. Rouw and G. Somsen,J. Chem. Thermodyn. 13, 67 (1981).

    Google Scholar 

  38. K. Suri, J. J. Spitzer, R. H. Wood, E. G. Abel, and P. T. Thompson,J. Solution Chem. 14, 781 (1985).

    Google Scholar 

  39. V. Abate, G. Barone, P. Cacace, G. Castronuovo, and V. Elia,J. Mol. Liq. 27, 59 (1983).

    Google Scholar 

  40. D. Hallen, S. O. Nilsson, W. Rotchild, and I. Wadsö,J. Chem. Thermodyn. 18, 429 (1986).

    Google Scholar 

  41. J. D. Cox and G. Pilcher,Thermochemistry of Organic and Organometallic Compounds, (Academic Press, London, 1970).

    Google Scholar 

  42. F. G. Beilstein,Handbuch der Organische Chemie andErgänzungswerke, Vol. EIV. 2 and Vol. EIV. 4 (Springer Verlag, Berlin, 1975 and 1977).

    Google Scholar 

  43. O. Shuro,Vapour Pressure Data Book, (Publ. Co., Tokyo, 1976).

    Google Scholar 

  44. M. V. Loch and B. F. Sagan,J. Chem. Soc. B 1966, 690 (1966).

    Google Scholar 

  45. C. de Visser, H. J. M. Grunbauer, and G. Somsen,Z. Phys. Chem. N.F. 97, 69 (1975).

    Google Scholar 

  46. P. P. S. Saluja, T. M. Young, R. F. Rodewald, F. H. Fuchs, D. Kohl, and R. Fuchs,J. Am. Chem. Soc. 99, 2949 (1977).

    Google Scholar 

  47. I. Wadsö,Acta Chem. Scand. 20, 544 (1966).

    Google Scholar 

  48. A. C. Rouw and G. Somsen,J. Solution Chem. 10, 533 (1981).

    Google Scholar 

  49. A. J. Easteal and L. A. Woolf,J. Chem. Thermodyn. 15, 195 (1983).

    Google Scholar 

  50. B. A. Cosgrove and J. W. Walkley,Can. J. Chem. 60, 1896 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bloemendal, M., Marcus, Y., Booij, M. et al. Enthalpies of solution and solvation of amides in N,N-dimethylformamide: Application of the random contact point approach. J Solution Chem 17, 15–33 (1988). https://doi.org/10.1007/BF00651850

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00651850

Key words

Navigation