Colloid and Polymer Science

, Volume 271, Issue 2, pp 162–172 | Cite as

Nucleation from supersaturated water vapors onn-dodecane substrate: A reverse Wilson chamber (RWC) method study

  • A. D. Alexandrov
  • M. Z. Avramov
Original Contributions


The reverse Wilson chamber method (RWC), developed for heterogencous nucleation investigation is applied to critical supersaturation measurements and determination of the surface concentration of nuclei (droplets) vs. supersaturation dependence in the case of nucleation from supersaturated water vapors onn-dodecane substrate. The experimental results obtained are interpreted in terms of the classical (Volmer) theory of heterogeneous nucleation as well as in the framework of the theory of barrierless nucleation. The several times lower critical supersaturations measured at four different temperatures, covering the range between 20° and 35° C, are explained by taking into account the effect of the negative line tension of three-phase contact. The temperature dependence of line tension for the three-phase systemn-dodecane/water/water vapor is extracted from the data to fir the theory. The results obtained are in complete disagreement with those ones obtained by Wu and Maa for the same system using jet-tensimeter technique, however, in another temperature interval. This discrepancy is discussed in detail in the text.

Key words

Line tension heterogeneous nucleation reverse Wilson chamber barrierless nucleation temperature dependence of line tension condensation on substrate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scheludko A, Chakarov V, Toshev BV (1981) J Colloid Interface Sci 82:83Google Scholar
  2. 2.
    Chakarov V, Scheludko A, Zembala M (1983) J Colloid Interface Sci 92:35Google Scholar
  3. 3.
    Chakarov V (1983) Colloid Polym Sci 26:452Google Scholar
  4. 4.
    Scheludko A, Chakarov V (1983) Colloid Polym Sci 261:776Google Scholar
  5. 5.
    Chakarov V, Zembala M, Novozhilova O, Scheludko A (1987) Colloid Polym Sci 265:347Google Scholar
  6. 6.
    Alexandrov AD, Toshev BV, Scheludko AD (1991) Langmuir 7:3211Google Scholar
  7. 7.
    Chakarov VM, Alexandrov AD, Toshev BV, Scheludko AD (1991) Colloids Surfaces 52:175Google Scholar
  8. 8.
    Scheludko A (1983) Colloids Surfaces 7:83Google Scholar
  9. 9.
    Radoev B, Scheludko A, Toshev BV (1986) J Colloid Interface Sci 113:1Google Scholar
  10. 10.
    Toshev BV, Platikanov D, Scheludko A (1988) Langmuir 4:489Google Scholar
  11. 11.
    Toshev BV, Scheludko AD (1991) Line Tension and Its Application to the Theory of Heterogeneous Nucleation, Lecture Notes in Physics 386. Capillarity Today Springer-Verlag, Berlin, pp 138–145Google Scholar
  12. 12.
    Wu WH, Maa JR (1976) J Colloid Interface Sci 56:365Google Scholar
  13. 13.
    Sigsbee RA, Pound GM (1967) Adv Colloid Interface Sci 1:335Google Scholar
  14. 14.
    Kotake S, Glass II (1981) Progr Aerospace Sci 19:129Google Scholar
  15. 15.
    Hirth JP, Moazed KL (1967) In: Haas G, Thou RE (eds) Physics of Thin Films. Academic Press, New York, Vol 4, p 97Google Scholar
  16. 16.
    Hruska SJ, Pound GM (1965) In: Reiss H (ed) Progress in Solid-State Chemistry. Pergamon Press, London, Vol 2, p 117Google Scholar
  17. 17.
    Sigsbee RA (1969) In: Zettlemoyer (ed) Nucleation. Marcel Dekker, New York, Chapter 4, pp 151–224Google Scholar
  18. 18.
    Volmer M (1929) Z Elektrochem 35:555Google Scholar
  19. 19.
    Volmer M (1939) Kinetik der Phasenbildung. Steinkopff, LeipzigGoogle Scholar
  20. 20.
    Pound GM, Simnad MT, Yang L (1954) J Chem Phys 22:1215Google Scholar
  21. 21.
    Volmer M, Weber A (1926) Z Phys Chem Abt A 119:277Google Scholar
  22. 22.
    Farkas L (1927) Z Phys Chem Abt A 125:236Google Scholar
  23. 23.
    Backer R, Doering W (1935) Ann Phys 24:719Google Scholar
  24. 24.
    Neumann AW (1974) Adv Colloid Interface Sci 4:105Google Scholar
  25. 25.
    Mitchell DF (1976) Thesis. Clarkson College of Technology, Potsdam, N.Y.Google Scholar
  26. 26.
    Volmer M, Flood H (1934) Z Phys Chem Abt A 170:273Google Scholar
  27. 27.
    Handbook of Chemistry and Physics (1976) Weast RC (ed) 57th edition. CRC Press, Cleveland, OH, p F-45Google Scholar
  28. 28.
    Handbook of Physical and Chemical Constants (1983) Ravdel AA, Ponomareva AM (eds.) Khimia, Leningrad, p 20 (in Russia)Google Scholar
  29. 29.
    Floriano MA, Angell CA (1990) J Phys Chem 94:4199Google Scholar
  30. 30.
    Aveyard R, Haydon DA (1965) Trans Faraday Soc 61:2255Google Scholar
  31. 31.
    Aveyard R, Briscoe BJ, Chapmann J (1972) J Chem Soc Faraday Trans I 63:10Google Scholar
  32. 32.
    Jasper JJ, Kring EV (1955) J Phys Chem 59:1019Google Scholar
  33. 33.
    Körösi G, Kovats E sz (1981) J Chem Eng Data 26:323Google Scholar
  34. 34.
    Reference 27—, p F-11Google Scholar
  35. 35.
    Girifalco LA, Good GJ (1957) J Phys Chem 61:904Google Scholar
  36. 36.
    Good RJ, Girifalco LA (1960) J Phys Chem 64:561Google Scholar
  37. 37.
    Adamson AW (1982) Physical Chemistry of Surfaces. John Wiley & Sons, New York, 4th edition, pp 107–109Google Scholar
  38. 38.
    Jarvis TJ, Donohue MD, Katz JL (1975) J Colloid Interface Sc 50:359Google Scholar
  39. 39.
    Korn GA, Korn, TM (1968) Mathematical Handbook. McGraw Hill Book Company, New York, 2nd edition.Google Scholar
  40. 40.
    Scheludko A, Toshev BV, Platikanov D. Proc 31st UPAC Congress Section 7. Physical Chemistry (1987) p 180Google Scholar

Copyright information

© Steinkopff-Verlag 1993

Authors and Affiliations

  • A. D. Alexandrov
    • 1
  • M. Z. Avramov
    • 2
  1. 1.Department of Nucleation, Central Laboratory of Mineral ProcessingBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of Physical Chemistry, Faculty of ChemistryUniversity of SofiaBulgaria

Personalised recommendations