Skip to main content
Log in

Nucleation from supersaturated water vapors onn-dodecane substrate: A reverse Wilson chamber (RWC) method study

  • Original Contributions
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The reverse Wilson chamber method (RWC), developed for heterogencous nucleation investigation is applied to critical supersaturation measurements and determination of the surface concentration of nuclei (droplets) vs. supersaturation dependence in the case of nucleation from supersaturated water vapors onn-dodecane substrate. The experimental results obtained are interpreted in terms of the classical (Volmer) theory of heterogeneous nucleation as well as in the framework of the theory of barrierless nucleation. The several times lower critical supersaturations measured at four different temperatures, covering the range between 20° and 35° C, are explained by taking into account the effect of the negative line tension of three-phase contact. The temperature dependence of line tension for the three-phase systemn-dodecane/water/water vapor is extracted from the data to fir the theory. The results obtained are in complete disagreement with those ones obtained by Wu and Maa for the same system using jet-tensimeter technique, however, in another temperature interval. This discrepancy is discussed in detail in the text.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scheludko A, Chakarov V, Toshev BV (1981) J Colloid Interface Sci 82:83

    Google Scholar 

  2. Chakarov V, Scheludko A, Zembala M (1983) J Colloid Interface Sci 92:35

    Google Scholar 

  3. Chakarov V (1983) Colloid Polym Sci 26:452

    Google Scholar 

  4. Scheludko A, Chakarov V (1983) Colloid Polym Sci 261:776

    Google Scholar 

  5. Chakarov V, Zembala M, Novozhilova O, Scheludko A (1987) Colloid Polym Sci 265:347

    Google Scholar 

  6. Alexandrov AD, Toshev BV, Scheludko AD (1991) Langmuir 7:3211

    Google Scholar 

  7. Chakarov VM, Alexandrov AD, Toshev BV, Scheludko AD (1991) Colloids Surfaces 52:175

    Google Scholar 

  8. Scheludko A (1983) Colloids Surfaces 7:83

    Google Scholar 

  9. Radoev B, Scheludko A, Toshev BV (1986) J Colloid Interface Sci 113:1

    Google Scholar 

  10. Toshev BV, Platikanov D, Scheludko A (1988) Langmuir 4:489

    Google Scholar 

  11. Toshev BV, Scheludko AD (1991) Line Tension and Its Application to the Theory of Heterogeneous Nucleation, Lecture Notes in Physics 386. Capillarity Today Springer-Verlag, Berlin, pp 138–145

    Google Scholar 

  12. Wu WH, Maa JR (1976) J Colloid Interface Sci 56:365

    Google Scholar 

  13. Sigsbee RA, Pound GM (1967) Adv Colloid Interface Sci 1:335

    Google Scholar 

  14. Kotake S, Glass II (1981) Progr Aerospace Sci 19:129

    Google Scholar 

  15. Hirth JP, Moazed KL (1967) In: Haas G, Thou RE (eds) Physics of Thin Films. Academic Press, New York, Vol 4, p 97

    Google Scholar 

  16. Hruska SJ, Pound GM (1965) In: Reiss H (ed) Progress in Solid-State Chemistry. Pergamon Press, London, Vol 2, p 117

    Google Scholar 

  17. Sigsbee RA (1969) In: Zettlemoyer (ed) Nucleation. Marcel Dekker, New York, Chapter 4, pp 151–224

    Google Scholar 

  18. Volmer M (1929) Z Elektrochem 35:555

    Google Scholar 

  19. Volmer M (1939) Kinetik der Phasenbildung. Steinkopff, Leipzig

    Google Scholar 

  20. Pound GM, Simnad MT, Yang L (1954) J Chem Phys 22:1215

    Google Scholar 

  21. Volmer M, Weber A (1926) Z Phys Chem Abt A 119:277

    Google Scholar 

  22. Farkas L (1927) Z Phys Chem Abt A 125:236

    Google Scholar 

  23. Backer R, Doering W (1935) Ann Phys 24:719

    Google Scholar 

  24. Neumann AW (1974) Adv Colloid Interface Sci 4:105

    Google Scholar 

  25. Mitchell DF (1976) Thesis. Clarkson College of Technology, Potsdam, N.Y.

  26. Volmer M, Flood H (1934) Z Phys Chem Abt A 170:273

    Google Scholar 

  27. Handbook of Chemistry and Physics (1976) Weast RC (ed) 57th edition. CRC Press, Cleveland, OH, p F-45

    Google Scholar 

  28. Handbook of Physical and Chemical Constants (1983) Ravdel AA, Ponomareva AM (eds.) Khimia, Leningrad, p 20 (in Russia)

    Google Scholar 

  29. Floriano MA, Angell CA (1990) J Phys Chem 94:4199

    Google Scholar 

  30. Aveyard R, Haydon DA (1965) Trans Faraday Soc 61:2255

    Google Scholar 

  31. Aveyard R, Briscoe BJ, Chapmann J (1972) J Chem Soc Faraday Trans I 63:10

    Google Scholar 

  32. Jasper JJ, Kring EV (1955) J Phys Chem 59:1019

    Google Scholar 

  33. Körösi G, Kovats E sz (1981) J Chem Eng Data 26:323

    Google Scholar 

  34. Reference 27—, p F-11

    Google Scholar 

  35. Girifalco LA, Good GJ (1957) J Phys Chem 61:904

    Google Scholar 

  36. Good RJ, Girifalco LA (1960) J Phys Chem 64:561

    Google Scholar 

  37. Adamson AW (1982) Physical Chemistry of Surfaces. John Wiley & Sons, New York, 4th edition, pp 107–109

    Google Scholar 

  38. Jarvis TJ, Donohue MD, Katz JL (1975) J Colloid Interface Sc 50:359

    Google Scholar 

  39. Korn GA, Korn, TM (1968) Mathematical Handbook. McGraw Hill Book Company, New York, 2nd edition.

    Google Scholar 

  40. Scheludko A, Toshev BV, Platikanov D. Proc 31st UPAC Congress Section 7. Physical Chemistry (1987) p 180

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandrov, A.D., Avramov, M.Z. Nucleation from supersaturated water vapors onn-dodecane substrate: A reverse Wilson chamber (RWC) method study. Colloid Polym Sci 271, 162–172 (1993). https://doi.org/10.1007/BF00651819

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00651819

Key words

Navigation