Colloid and Polymer Science

, Volume 271, Issue 2, pp 114–123 | Cite as

Comparison of oil-soluble and water-soluble initiation of styrene polymerization in a three-component microemulsion

  • J. E. Puig
  • V. H. Pérez-Luna
  • M. Pérez-González
  • E. R. Macías
  • B. E. Rodríguez
  • E. W. Kaler
Original Contributions

Abstract

The polymerization of styrene in three-component oil-in-water microemulsions made with the cationic surfactant dodecyltrimethylammonium bromide is studied by dilatometry and quasielastic light scattering as a function of type and concentration of initiator. Fast polymerization rates, high conversions, and high molecular weight polymers are achieved with both oil-soluble (AIBN) and water-soluble (potassium persulfate) initiators. The rate of polymerization shows initiation and termination intervals, but no constant-rate interval is observed. Stable monodisperse microlatexes are obtained with both types of initiators. For both AIBN and potassium persulfate, polystyrene molecular weight is proportional to initiator concentration [I]−0.4 and particle radii decrease as [I]−0.2. Polymerization initiation occurs in or at the microemulsion droplets, and polymer particles grow by recruiting monomer and surfactant from uninitiated swollen micelles.

Key words

Styrene polymerization latex microemulsion polystyrene 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Piirma I (1982) Emulsion Polymerization. Academic Press, New YorkGoogle Scholar
  2. 2.
    Blackley DC (1975) Emulsion Polymerization. John Wiley, New YorkGoogle Scholar
  3. 3.
    Candau F (1987) In: Mark HF, Bikales NM, Overberger CG, Menges G (Eds.) Encyclopedia of Polymer Science and Engineering, Vol. 9. John Wiley, New York, pp. 718–724Google Scholar
  4. 4.
    Dunn AS (1988) In: Eastwood GC, Ledwith A, Sigwalt P, (Eds.) Comprehensive Polymer Science Vol. 4. Pergamon Press, New York, pp. 219–224Google Scholar
  5. 5.
    Stoffer JO, Bone T (1980) J Dispersion Sci Technol 1:37; J Polym Sci Polym Chem Ed 18:2641Google Scholar
  6. 6.
    Jayakrishnan A, Shah DO (1984) J Polym Chem Polym Lett Ed 22:31Google Scholar
  7. 7.
    Atik SS, Thomas JK (1981) J Am Chem Soc 103:4279; (1983) J Am Chem Soc 105:4515Google Scholar
  8. 8.
    Johnson PL, Gulari E (1984) J Polym Sci Polym Chem Ed 22:3967Google Scholar
  9. 9.
    Kuo P-L, Turro NJ, Tsang C-M, El-Aasser MS, Vanderhoff JW (1987) Macromolecules 20:1216Google Scholar
  10. 10.
    Haque E, Qutubuddin S (1988) J Polym Sci Polym Lett Ed 26:429Google Scholar
  11. 11.
    Leong YS, Candau F (1982) J Phys Chem 86:2269Google Scholar
  12. 12.
    Candau F, Leong YS, Pouyet G, Candau S (1984) J Colloid Interface Sci 101:167Google Scholar
  13. 13.
    Candau F, Leong YS, Fitch R (1985) J Polym Sci Polym Chem Ed 23:193Google Scholar
  14. 14.
    Candau F, Zekhnini Z, Durand J-P (1987) Prog Colloid Polym Sci 73:33Google Scholar
  15. 15.
    Guo JS, El-Aasser MS, Vanderhoff JW (1989) J Polym Sci Polym Chem Ed 27:691Google Scholar
  16. 16.
    Pérez-Luna VH, Puig JE, Castaño VM, Rodriguez BE, Murthy AK, Kaler EW (1990) Langmuir 6:1040Google Scholar
  17. 17.
    Brandrup J, Immergut EH (1989) Polymer Handbook. John Wiley, New YorkGoogle Scholar
  18. 18.
    Ugelstad J, El-Aasser MS, Vanderhoff JW (1973) J Polym Sci Polym Lett Ed 111:503Google Scholar
  19. 19.
    Chamberlain BJ, Napper DH, Gilbert RG (1982) J Chem Soc Faraday Trans 178:591Google Scholar
  20. 20.
    Choi YT, El-Aasser MS, Sudol ED, Vanderhoff JW (1985) J Polym Sci Polym Chem Ed 23:2973Google Scholar
  21. 21.
    Alexander AE, Napper DH (1971) In: Jenkins AD (ed.) Progress in Polymer Science 3:145. Pergamon Press, OxfordGoogle Scholar
  22. 22.
    Eliseeva VI, Ivanchev SS, Kuchanov SI, Lebedev AV (1981) Emulsion Polymerization and Its Applications in Industry. Consultants Bureau, New York and LondonGoogle Scholar
  23. 23.
    Horie K, Mita I, Kambe H (1968) J Polymer Sci A-1 6:2663Google Scholar
  24. 24.
    Chang NJ (1986) PhD Thesis, University of WashingtonGoogle Scholar
  25. 25.
    Gan LM, Chew CH, Friberg SE (1983) J Macromol Sci Chem A19:739Google Scholar
  26. 26.
    Gan, LM, Chew CH (1983) J Dispersion Sci Technol 4:291Google Scholar
  27. 27.
    Kahlweit M, Strey R, Schomäcker R, Haase D (1989) Langmuir 5:305Google Scholar
  28. 28.
    Chang NJ, Kaler EW (1986) Langmuir 2:184Google Scholar
  29. 29.
    Friend JP, Alexander AE (1968) J Polymer Sci A-1 6:1833Google Scholar
  30. 30.
    Vázquez VH, Puig JE, Kaler EW, J Polym Sci Polymer Lett (to be submitted)Google Scholar
  31. 31.
    Feng L, Ng KYS (1990) Macromolecules 23:1048; (1991) Colloids Surf 53:349Google Scholar
  32. 32.
    Van der Hoff BME (1962) Adv Chem Ser 34:6Google Scholar
  33. 33.
    Edelhauser H, Breitenbach JW (1959) J Polymer Sci Polym Chem Ed 35:423Google Scholar
  34. 34.
    Breitenbach JW, Edelhauser H (1961) Makromol Chem 44–46:196Google Scholar
  35. 35.
    Barton J, Karpatyova A (1987) Makromol Chem 188:693Google Scholar
  36. 36.
    Mukerjee P, Cardinal JR (1978) J Phys Chem 82:1620Google Scholar
  37. 37.
    Corona-Galván S, Castañeda-Pérez J, Martínez-Gomez A, Puig JE, Schulz PC (1990) Colloid Polym Sci 268:778Google Scholar
  38. 38.
    Gan LM, Chew CH, Lye I, Imae T (1990) Polym Bull 25:193Google Scholar
  39. 39.
    Gerrens H (1959) Fortschr Hochpolym Forsch 1:234Google Scholar
  40. 40.
    Sundberg DC, Eliassen JD (1971) In: Fitch RM (ed.) Polymer Colloids. Plenum Press, New YorkGoogle Scholar

Copyright information

© Steinkopff-Verlag 1993

Authors and Affiliations

  • J. E. Puig
    • 1
  • V. H. Pérez-Luna
    • 1
  • M. Pérez-González
    • 1
  • E. R. Macías
    • 1
  • B. E. Rodríguez
    • 2
  • E. W. Kaler
    • 2
  1. 1.Facultad de Ciencias QuimicasUniversidad de GuadalajaraGuadalajaraMéxico
  2. 2.Department of Chemical EngineeringUniversity of DelawareUSA

Personalised recommendations