Journal of Solution Chemistry

, Volume 1, Issue 6, pp 517–530 | Cite as

Transport in ionic liquids under pressure. II. Concentrated calcium nitrate-water and magnesium chloride-water solutions

  • C. A. Angell
  • L. J. Pollard
  • W. Strauss
Article

Abstract

The interpretations of transport properties of concentrated aqueous solutions by the “physics of glass-forming liquids” approach recently applied to normal pressure measurements is extended by analysis of the pressure dependence of the electrical conductance of Ca(NO3)2 and MgCl2 solutions. The conductance of these solutions has been determined to 3 kbar over the temperature range 20–100°C for compositions 9–20 mole% Ca(NO3)2 (5.6–13.9 m) and 80–200°C for MgCl2 solutions of composition 12.4 and 14.2% MgCl2. Using high-pressure-data determination of the glass-transition temperature to eliminate one adjustable parameter, it is found that the pressure dependence of the conductance of these solutions can be adequately described by ascribing all the pressure dependences to a single parameter, the “ideal glass” temperature To(P) of the Vogel-Tammann-Fulcher (VTF) equation known to describe temperature dependences of transport in viscous liquids. The results are discussed in terms of the Adam-Gibbs entropy theory and the Angell-Rao bond lattice model. The latter relates the pressure dependence of conductance to the volume change involved in configurational excitations of the liquid quasi-lattice, for which a mean volume increment of 1.6 cm3/mole is obtained.

Key Words

High pressure concentrated solutions electrical conductances glass temperature calcium nitrate magnesium chloride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. J. Alder and T. E. Wainwright,J. Chem. Phys. 31, 459 (1959);33, 1439 (1960).Google Scholar
  2. 2.
    A. Rahman, Private communication.Google Scholar
  3. 3.
    L. V. Woodcock,Proc. San Diego Conference on Computer Simulation, June 1972 (to be published).Google Scholar
  4. 4.
    J. G. Aston, H. L. Fink, A. B. BestuP, E. L. Pace, and G. J. Szasz,J. Am. Chem. Soc. 68, 52 (1946); M. R. Carpenter, D. R. Davies, and A. J. Matheson,J. Chem. Phys. 46, 2451 (1967).Google Scholar
  5. 5.
    C. A. Angell and E. J. Sare,J. Chem. Phys. 52, 1058 (1970).Google Scholar
  6. 6.
    C. A. Angell,J. Phys. Chem. 70, 3988 (1966).Google Scholar
  7. 7.
    C. A. Angell and R. D. Bressel,J. Phys. Chem. (1972) (accepted for publication).Google Scholar
  8. 8.
    C. T. Moynihan,J. Phys. Chem. 70, 3399 (1966).Google Scholar
  9. 9.
    A. Dietzel and H. J. Poegel,Proc. 3rd Intern. Glass Congress, Venice, 1953, p. 219.Google Scholar
  10. 10.
    C. A. Angell,J. Phys. Chem. 68, 1917 (1964);J. Chem. Phys. 46, 4673 (1967).Google Scholar
  11. 11.
    C. A. Angell, W. Strauss, and L. J. Pollard,J. Chem. Phys. 50, 2694 (1969).Google Scholar
  12. 12.
    C. A. Angell and D. M. Gruen,J. Am. Chem. Soc. 88, 5192 (1966); D. Chin, Ph.D. thesis, Purdue University, 1971.Google Scholar
  13. 13.
    G. Adam and J. H. Gibbs,J. Chem. Phys. 43, 139 (1965).Google Scholar
  14. 14.
    M. H. Cohen and D. Turnbull,J. Chem. Phys. 31, 1164 (1959).Google Scholar
  15. 15.
    E. Williams and C. A. Angell (to be published).Google Scholar
  16. 16.
    M. Goldstein,J. Chem. Phys. 43, 1852 (1965).Google Scholar
  17. 17.
    C. A. Angell,J. Phys. Chem. 75, 3698 (1971).Google Scholar
  18. 18.
    C. A. Angell and K. J. Rao,J. Chem. Phys. 57, 470 (1972).Google Scholar

Copyright information

© Plenum Publishing Corporation 1972

Authors and Affiliations

  • C. A. Angell
    • 1
  • L. J. Pollard
    • 2
  • W. Strauss
    • 2
  1. 1.Department of ChemistryPurdue UniversityLafayette
  2. 2.Department of Industrial ScienceUniversity of MelbourneParkvilleAustralia

Personalised recommendations