Skip to main content
Log in

Search for hydrophobic association between small aprotic solutes from an application of the nuclear magnetic relaxation method

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Proton and deuteron magnetic relaxation rates of the four solutes acetone, acetonitrile, trimethylamine, and tetramethylurea in their aqueous mixtures are reported. For the normal and deuterated organic substances the water was D2O and H2O, respectively. The intermolecular relaxation rates were determined. Experimental results for the self-diffusion coefficients of trimethylamine and tetramethylurea in their aqueous mixtures are also reported. From these results and literature data the A parameter, A=(1/T1)inter·D1/c′1 being a criterion for association, was calculated. We obtained the result that only for the largest solute molecule, i.e. tetramethylurea, A showed the typical concentration dependence indicating solute-solute association. For the other three components self-association is not outside the range of the sensitivity of the present method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Franks and M. W. Evans,J. Chem. Phys. 13, 507 (1945).

    Google Scholar 

  2. F. Franks, inWater. A Comprehensive Treatise, Vol. 4, F. Franks, ed. (Plenum Press, New York, 1975), Chap. 1.

    Google Scholar 

  3. H. G. Hertz,Ber. Bunsenges. Phys. Chem. 68, 907 (1964).

    Google Scholar 

  4. See also: ‘The Hydrophobic Interaction’,Faraday Society Discussions 17, 1982.

  5. A. Ben-Naim,Water and Aqueous Solutions, (Plenum Press, New York, 1974).

    Google Scholar 

  6. L. R. Pratt and D. Chandler,J. Chem. Phys. 67, 3683 (1977);73, 3430, 3434 (1980);J. Solution Chem. 9, 1 (1980).

    Google Scholar 

  7. A. Geiger, A. Rahman, and F. H. Stillinger,J. Chem. Phys. 70, 283 (1979).

    Google Scholar 

  8. A. Ben-Naim,Hydrophobic Interactions, (Plenum Press, New York, 1980).

    Google Scholar 

  9. F. Franks, inWater. A Comprehensive Treatise, Vol. 4, F. Franks, ed. (Plenum Press, New York, 1975), various chapters of Vol. 4.

    Google Scholar 

  10. E. v. Goldammer and H. G. Hertz,J. Phys. Chem. 74, 3734 (1970).

    Google Scholar 

  11. E. v. Goldammer and M. D. Zeidler,Ber. Bunsenges Phys. Chem. 73, 4 (1969).

    Google Scholar 

  12. R. Göller, H. G. Hertz, and R. Tutsch,Pure and Applied Chem. 32, 149 (1972).

    Google Scholar 

  13. H. G. Hertz and R. Tusch,Ber. Bunsenges. Phys. Chem. 80, 1268 (1966).

    Google Scholar 

  14. A. Abragam,The Principles of Nuclear Magnetism, (Clarendon Press, Oxford, 1961).

    Google Scholar 

  15. H. G. Hertz,Nucl. Magn. Reson. Spectroscopy 3, 159 (1967).

    Google Scholar 

  16. H. G. Hertz, R. Tutsch, and N. S. Bowman,J. Chem. Phys. 80, 4117 (1976).

    Google Scholar 

  17. M. D. Zeilder,Ber. Bunsenges. Phys. Chem. 69, 659 (1965).

    Google Scholar 

  18. H. G. Hertz and C. Radle,Ber. Bunsenges. Phys. Chem. 77, 521 (1973).

    Google Scholar 

  19. A. Ben-Naim,J. Chem. Phys. 67, 4884 (1977).

    Google Scholar 

  20. M. C. A. Donkersloot,J. Solution Chem. 8, 293 (1979).

    Google Scholar 

  21. K. J. Patil,J. Solution Chem. 10, 315 (1981).

    Google Scholar 

  22. A. Ben-Naim, in Ref. 4. See also: ‘The Hydrophobic Interaction’,Faraday Society Discussions 17, 1982.

  23. T. C. Farrar and E. D. Becker,Pulse and Fourier Transform NMR, (Academic Press, New York, 1971).

    Google Scholar 

  24. E. D. Stejskall and J. E. Tanner,J. Chem. Phys. 42, 288 (1965).

    Google Scholar 

  25. R. Mills and H. G. Hertz.J. Phys. Chem. 84, 220 (1980).

    Google Scholar 

  26. H. G. Hertz and M. D. Zeilder,Ber. Bensenges. Phys. Chem. 68, 821 (1964).

    Google Scholar 

  27. M. M. Silva, Thesis, Karlsruhe (1977).

  28. K. Sasaki and K. Arakawa,Bull. Chem. Soc. Japan 46, 2738 (1973).

    Google Scholar 

  29. H. G. Hertz and H. Leiter,Z. Phys. Chem. NF, in press.

  30. J. Timmermans,Physico-Chemical Constants of Binary Systems (Interscience Publishers, New York).

  31. H. J. Bender and H. G. Hertz,Ber. Bensenges. Phys. Chem. 81, 468 (1977).

    Google Scholar 

  32. V. Berg, H. G. Hertz, and R. Tutsch,Ber. Bensenges. Phys. Chem. 80, 1278 (1976).

    Google Scholar 

  33. W. Koch and H. G. Hertz,Z. Phys. Chem. NF 130, 139 (1982).

    Google Scholar 

  34. W. Koch, H. Leiter, and H. G. Hertz,J. Solution Chem. 10, 419 (1981).

    Google Scholar 

  35. C. Albayrak, H Leiter, and H. G. Hertz, to be published.

  36. D. W. McCall and D. C. Douglass,J. Phys. Chem. 71, 987 (1967).

    Google Scholar 

  37. G. Roux, D. Roberts, G. Perron, and J. E. Desnoyers,J. Solution Chem. 9, 629 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave from Department of Chemistry, Institute of Science, Nagpur-1, India.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leiter, H., Patil, K.J. & Hertz, H.G. Search for hydrophobic association between small aprotic solutes from an application of the nuclear magnetic relaxation method. J Solution Chem 12, 503–517 (1983). https://doi.org/10.1007/BF00651701

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00651701

Key words

Navigation