Advertisement

Astrophysics and Space Science

, Volume 96, Issue 2, pp 417–430 | Cite as

Static structure of general-relativistic degenerate configurations: Effects of a core

  • J. L. Zhang
  • W. Y. Chau
  • Kayll Lake
  • J. Stone
Article

Abstract

Models of spherically-symmetric static systems made up of self-gravitating, completely degenerate neutral fermions containing a core are constructed within the framework of general relativity and the effects of different core masses and compactness on the properties of the system are examined. For the specific case where the fermions are massive neutrinos (∼10 eV) we find, for example, that it is possible to have a neutrino halo with a normal Galaxy, or a cluster of galaxies, as the core, with the right values of mass and radius required of the ‘invisible halo’ in the missing mass problem. The suggestive nature of these results calls for further studies using a more realistic equation of state.

Keywords

General Relativity Static System Static Structure Massive Neutrino Core Masse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahcall, J. and Ostriker, J.P.: 1975Nature 256, 23.Google Scholar
  2. Chandrasekhar, S.: 1935,Monthly Notices Roy. Astron. Soc. 95, 222.Google Scholar
  3. Davis, M., Tonry, J., Huchra, J., and Latham, D. W.: 1980,Astrophys. J. 238, L113.Google Scholar
  4. Davis, M., Lecar, M., Pryor, C. and Witter, E.: 1981,Astrophys. J. 250, 423.Google Scholar
  5. Dolgov, A. D. and Zeldovich, Ya.B.: 1981,Rev. Mod. Phys. 53, 1.Google Scholar
  6. Fang, L.-Z. and Xiang, S.-P.: 1982, preprint.Google Scholar
  7. Frampton, P. H. and Vogel, P.: 1982,Phys. Reports 82, 340.Google Scholar
  8. Gao, J. G. and Ruffini, R.: 1981,Acta Astrophys. Sinica 1, 19.Google Scholar
  9. Harrison, B. K., Thorne, K. S., Wakano, M., and Wheeler, J. A.: 1965,Gravitation Theory and Gravitational Collapse (University of Chicago Press) Chicago.Google Scholar
  10. Hartwick, F. D. A.: 1982,Astrophys. J. 255, L91.Google Scholar
  11. Kallman, C.-G.: 1981,Phys. Lett. 83A, 179.Google Scholar
  12. Lubimov, V. A., Novikov, E. G., Nozik, V. A., Tretyakov, E. F., and Kosik, V. S.: 1980,Phys. Letters 94B, 266.Google Scholar
  13. Oppenheimer, J. R. and Volkoff, G. M.: 1939,Phys. Rev. 55, 283.Google Scholar
  14. Reines, F., Sobel, H. W., and Pasieb, E.: 1980,Phys. Rev. 45, L1307.Google Scholar
  15. Rubin, V. C., Ford, W. K., and Thonnard, N.: 1980,238, 471.Google Scholar
  16. Sargent, W. L. W., Young, P. J., Boksenberg, A., Shortridge, K., Lynds, C. R., and Hartwick, F. D. A.: 1978,Astrophys. J. 221, 731.Google Scholar
  17. Schramm, D. N. and Steigman, G.: 1981,Astrophys. J. 243, 1.Google Scholar
  18. Zeldovich, Ya. B. and Novikov, I. D.: 1971,Relativistic Astrophysics, Vol. 1, University of Chicago Press, Chicago.Google Scholar

Copyright information

© D. Reidel Publishing Company 1983

Authors and Affiliations

  • J. L. Zhang
    • 1
  • W. Y. Chau
    • 2
  • Kayll Lake
    • 2
  • J. Stone
    • 2
  1. 1.Astrophysics Research DivisionChina University of Science and TechnologyHefei, AnhweiPeople's Republic of China
  2. 2.Astronomy Group, Department of PhysicsQueen's UniversityKingstonCanada

Personalised recommendations