Advertisement

Astrophysics and Space Science

, Volume 8, Issue 1, pp 20–28 | Cite as

Origin of low energy cosmic ray positrons at energies ≳2 MeV

  • J. J. Burger
  • S. A. Stephens
  • B. N. Swanenburg
Article

Abstract

It is shown that an appreciable flux of positrons below ∼a few MeV in the cosmic radiation could arise from the decay of cobalt nuclei in the decay chain56Ni→56Co→56Fe, which occurs in the silicon burning shells of supernovae just after their ejection at relativistic velocities. The equilibrium spectrum of positrons in the interstellar space has been calculated on the assumption that the observed abundance of iron nuclei in the cosmic radiation is the result of the above process. It is found that the observation below about 10 MeV can be well explained with a moderate acceleration of the positrons in the expanding envelope of supernovae prior to their propagation in the interstellar space. The total56Ni content in the shells of supernova necessary to account for the observed positrons is in agreement with that required to explain the peak luminosity during the supernova outburst. Since this model deals with positrons created at the time of injection of cosmic rays into the interstellar space, it becomes possible to study the shape of the injection spectrum of cosmic rays.

Keywords

Burning Cobalt Relativistic Velocity Cosmic Radiation Iron Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anand, K. C., Daniel, R. R., Stephens, S. A., Bhowmik, B., Krishna, C. S., Aditya, P. K., and Puri, R. K.: 1968a,Proc. Ind. Acad. Sci. 67, 138.Google Scholar
  2. Anand, K. C., Daniel, R. R., and Stephens, S. A.: 1968b,Phys. Rev. Letters 20, 764.Google Scholar
  3. Anand, K. C., Daniel, R. R., and Stephens, S. A.: 1969a, inProc. Int. Conf. Cosmic Rays, Budapest, 0G-41.Google Scholar
  4. Anand, K. C., Daniel, R. R., and Stephens, S. A.: 1969b,Nature 224, 1290.Google Scholar
  5. Beuermann, K. P., Rice, C. J., Stone, E. C., and Vogt, R. E.: 1969,Phys. Rev. Letters 22, 412.Google Scholar
  6. Bleeker, J. A. M., Burger, J. J., Deerenberg, A. J. M., Scheepmaker, A., Swanenburg, B. N., and Tanaka, Y.: 1968,Can. J. Phys. 46, S 522.Google Scholar
  7. Bodansky, D., Clayton, D. D., and Fowler, W. A.: 1968a,Phys. Rev. Letters 20, 161.Google Scholar
  8. Bodansky, D., Clayton, D. D., and Fowler, W. A.: 1968b,Astrophys. J Suppl.,16, 299.Google Scholar
  9. Clayton, D. D., Colgate, S. A., and Fishman, G. J.: 1969,Astrophys. J 155, 75.Google Scholar
  10. Clayton, D. D. and Peters, G.: 1969, inProc. Int. Conf. Cosmic Rays, Budapest, 0G-76.Google Scholar
  11. Cline, T. L. and Hones, E. W.: 1968,Can J. Phys. 46, S527.Google Scholar
  12. Cline, T. L. and Hones, E. W.: 1969, inProc. Int. Conf. Cosmic Rays, Budapest, 0G-29.Google Scholar
  13. Cline, T. L. and Porreca, G.: 1969, inProc. Int. Conf. Cosmic Rays, Budapest, 0G-26.Google Scholar
  14. Colgate, S. A. and McKee, C.: 1969,Astrophys. J. 157, 623.Google Scholar
  15. Daniel, R. R. and Stephens, S. A.: 1969, inProc. Int. Conf. Cosmic Rays, Budapest, 0G-102.Google Scholar
  16. Daniel, R. R. and Stephens, S. A.: 1970,Space Sci. Rev. 10, 599.Google Scholar
  17. Dayton, B., Lund, N., and Risbo, T.: 1969, inProc. Int. Conf. Cosmic Rays, Budapest, 0G-108.Google Scholar
  18. Fowler, W. A. and Hoyle, F.: 1964,Astrophys. J. Suppl. 9, 201 (No. 91).Google Scholar
  19. Lederer, C. M., Hollander, J. M., and Perlman, I.: 1967,Table of Isotopes, Wiley, New York.Google Scholar
  20. Lezniak, J. A., von Rosenvinge, T. T., and Webber, W. R.: 1969, inProc. Int. Conf. Cosmic Rays, Budapest, 0G-68.Google Scholar
  21. Nishimura, J., Mikumo, E., Mito, I., Niu, K., Ohta, I., and Taira, J.: 1969, inProc. Int. Conf. Cosmic Rays, Budapest, 0G-43.Google Scholar
  22. Parker, E. N., 1964,Interplanetary Dynamical Processes, Interscience, New York.Google Scholar
  23. Perola, G. C., Scarsi, L., and Sironi, G.: 1967,Nuovo Cimento 52B, 455.Google Scholar
  24. Ramaty, R. and Lingenfelter, R. E.: 1966,J. Geophys. Res. 71, 3687.Google Scholar
  25. Ramaty, R., Stecker, F. W., and Misra, D.: 1969, Preprint, NASA, X-611-69-287.Google Scholar
  26. von Rosenvinge, T. T., Webber, W. R., and Ormes, J. F.: 1969,Astrophys. Space Sci. 5, 342.Google Scholar
  27. Simnett, G. M. and McDonald, F. B.: 1969,Astrophys. J. 157, 1435.Google Scholar
  28. Stecker, F. W.: 1969,Astrophys. Space Sci. 3, 579.Google Scholar
  29. Truran, J. W., Cameron, A. G. W., and Gilbert, A.: 1966,Can. J. Phys. 44, 563.Google Scholar
  30. Truran, J. W., Arnett, W. D., and Cameron, A. G. W.: 1967,Can. J. Phys. 45, 2315.Google Scholar
  31. Verma, S. D.: 1969,Astrophys. J. 156, L79.Google Scholar
  32. Waddington, C. J., Freier, P. S., and Long, C. E.: 1969, inProc. Int. Conf. Cosmic Rays, Budapest, 0G-75.Google Scholar

Copyright information

© D. Reidel Publishing Company 1970

Authors and Affiliations

  • J. J. Burger
    • 1
  • S. A. Stephens
    • 1
  • B. N. Swanenburg
    • 1
  1. 1.Cosmic Ray Working GroupKamerlingh Onnes LaboratoriumLeidenThe Netherlands

Personalised recommendations