Advertisement

Journal of Solution Chemistry

, Volume 20, Issue 1, pp 39–56 | Cite as

Model for alkanol + alkane mixtures: Extension and experimental verification

  • A. Liu
  • K. Pusicha
  • A. M. Demiriz
  • F. Kohler
Article

Abstract

A recently developed model for 1-alkanol+alkane mixtures is extended to methanol mixtures and to the non-polar mixing partners tetrachloromethane and benzene. The model contains chemical and physical terms, which are combined in a thermodynamically consistent way. For our calculations on methanol mixtures, we have measured g E of methanol+ hexane via static vapor pressure measurements. In order to check the model predictions for systems with higher alkanols and alkanes, we have also determined g E of 1-octanol+tetradecane by measuring the melting curve. The reproduction of the excess properties of methanol+hexane, the agreement between predicted and measured values of g E for 1-octanol+ tetradecane, and the capability to deal also with other non-polar mixing partners demonstrate the power and reliability of the model.

Key words

Methanol+hexane 1-octanol+tetradecane model for mixtures of 1-alkanols with non-polar solvents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Liu, F. Kohler, L. Karrer, J. Gaube, and P. Spellucci,Pure and Appl. Chem. 61, 1441 (1989).Google Scholar
  2. 2.
    J. A. Riddick, W. B. Bunger, and T. K. Sakaro,Organic Solvents, 4th edn., (Wiley, New York, 1986).Google Scholar
  3. 3.
    T. Boublik and K. Aim,Coll. Czech. Chem. Comm. 37, 3513 (1972).Google Scholar
  4. 4.
    T. M. Letcher and F. Marsicano,J. Chem. Thermodyn. 6, 509 (1974).Google Scholar
  5. 5.
    R. R. Dreisbach and R. A. Martin,Ind. Eng. Chem. 41, 2875 (1949).Google Scholar
  6. 6.
    A. J. Streiff, A. R. Hulme, P. A. Cowie, N. C. Krouskop, and F. D. Rossini,Anal. Chem. 27, 411 (1955).Google Scholar
  7. 7.
    H. Atrops, H. E. Kalali, and F. Kohler,Ber. Bunsenges. Phys. Chem. 86, 26 (1982).Google Scholar
  8. 8.
    M. Davies and B. Kybett,Trans. Faraday Soc. 61, 1608 (1965).Google Scholar
  9. 9.
    J. K. Cline and D. H. Andrews,J. Am. Chem. Soc. 53, 3668 (1931).Google Scholar
  10. 10.
    H. L. Finke, M. E. Gross, G. Waddington, and H. M. Huffman,J. Am. Chem. Soc. 76, 333 (1954).Google Scholar
  11. 11.
    J. F. Messerly and G. B. Guthrie,J. Chem. Eng. Data 12, 338 (1967).Google Scholar
  12. 12.
    G. S. Parks and D. W. Light,J. Am. Chem. Soc. 56, 1511 (1934).Google Scholar
  13. 13.
    N. Van Nhu, G. Nowak, and P. Svejda,Ber. Bunsenges. Phys. Chem. 92, 1537 (1988).Google Scholar
  14. 14.
    A. Liu, Doctoral Thesis, Ruhr-University, Bochum (1990).Google Scholar
  15. 15.
    N. Van Nhu and F. Kohler,Fluid Phase Equili. 50, 267 (1989).Google Scholar
  16. 16.
    M. A. Siddiqi, G. Götze, and F. Kohler,Ber. Bunsenges. Phys. Chem. 84, 529 (1980).Google Scholar
  17. 17.
    H. E. Kalali, A. M. Demiriz, J. Budde, F. Kohler, A. Dallos, and F. Ratkovics,Fluid Phase Equili. 54, 111 (1990).Google Scholar
  18. 18.
    K. N. Marsh and A. E. Richards,J. Chem. Eng. Data 23, 288 (1978).Google Scholar
  19. 19.
    B. D. Smith and R. Srivastava,Thermodynamic Data for Pure Compounds, Part B (Elsevier, Amsterdam 1986).Google Scholar
  20. 20.
    J. H. Dymond and E. B. Smith,The Virial Coefficients of Pure Gases and Mixtures (Clarendon Press, Oxford 1980).Google Scholar
  21. 21.
    J. J. Ott, G. V. Cornett, C. E. Stouffer, B. F. Woodfield, C. Guanquan, and J. J. Christensen,J. Chem. Thermodyn 18, 867 (1986).Google Scholar
  22. 22.
    S. C. Hwang and R. L. Robinson,J. Chem. Eng. Data 22, 319 (1977).Google Scholar
  23. 23.
    H. C. Van Ness and M. M. Abbott,Int. Data Ser. A 2 (1976).Google Scholar
  24. 24.
    G. Hradetzky and H.-J. Bittrich,Int. Data Ser. A 216 (1986).Google Scholar
  25. 25.
    F. Kohler,Monatsh. Chem. 88, 388 (1957).Google Scholar
  26. 26.
    R. J. Munn and F. Kohler,Monatsh. Chem. 91, 381 (1960).Google Scholar
  27. 27.
    V. Ragaini, R. Santi, and S. Carrà,Lincei Rend. Sc., Fis. Mat. e Nat. 45, 540 (1968).Google Scholar
  28. 28.
    E. S. Kim and K. N. Marsh,J. Chem. Eng. Data 33, 288 (1983).Google Scholar
  29. 29.
    M. D. Donohue and J. M. Prausnitz,Can. J. Chem. 53, 1586 (1975).Google Scholar
  30. 30.
    H. V. Kehiaian,Ber. Bunsenges. Phys. Chem. 81, 908 (1977).Google Scholar
  31. 31.
    H. V. Kehiaian, J.-P. E. Grolier, and G. C. Benson,J. Chim. Physique 75, 1031 (1978).Google Scholar
  32. 32.
    L. Andreoli-Ball, D. Patterson, M. Costas, and M. Caceres-Alonso,J. Chem. Soc. Faraday Trans. I. 84, 3991 (1988).Google Scholar
  33. 33.
    J. A. Barker, I. Brown, and F. Smith,Disc. Faraday Soc. 15, 142 (1953).Google Scholar
  34. 34.
    R. M. Stokes and C. Burfitt,J. Chem. Thermodyn. 5, 623 (1973).Google Scholar
  35. 35.
    Y. S. Luo, P. L. Cen, B. G. Li, J. D-Zhou, and Z. Q. Zhu,Fluid Phase Equili. 20, 137 (1985).Google Scholar
  36. 36.
    T. B. Tai, R. S. Ramalho, and S. Kaliaguine,Can. J. Chem. Eng. 50, 771 (1972).Google Scholar
  37. 37.
    G. Scatchard and L. Ticknor,J. Am. Chem. Soc. 74 3724 (1952).Google Scholar
  38. 38.
    E. A. Moelwyn-Hughes and R. W. Missen,J. Phys. Chem. 61, 518 (1957).Google Scholar
  39. 39.
    G. C. Paraskevopoulos and R. W. Missen,Trans. Faraday Soc. 58, 869 (1962).Google Scholar
  40. 40.
    R. F. Platford,J. Chem. Soc. Faraday Trans. I 73, 267 (1977).Google Scholar
  41. 41.
    B. Darce and G. C. Benson,Can. J. Chem. 41, 278 (1963).Google Scholar
  42. 42.
    I. Nagata and K. Tamura,Fluid Phase Equili. 15, 67 (1963).Google Scholar
  43. 43.
    J.-E. Otterstedt and R. W. Missen,Trans. Faraday Soc. 58, 879 (1962).Google Scholar
  44. 44.
    G. Scatchard, S. E. Wood, and J. M. Mochel,J. Am. Chem. Soc. 8, 1957 (1946).Google Scholar
  45. 45.
    K. Strubl, V. Svoboda, and R. Holub,Coll. Czech. Chem. Comm. 37, 3522 (1972).Google Scholar
  46. 46.
    A. Oracz and G. Kolassinska,Fluid Phase Equili. 35, 253 (1987).Google Scholar
  47. 47.
    V. C. Smith and R. L. Robinson,J. Chem. Eng. Data 15 391 (1970).Google Scholar
  48. 48.
    R. F. Platford,J. Solution Chem. 5, 645 (1976).Google Scholar
  49. 49.
    K. Hoskyns, D. Jones, and B. C.-Y. Lu,J. Chem. Eng. Data 11, 488 (1966).Google Scholar
  50. 50.
    H. W. Schnaible, H. C. Van Ness, and J. M. Smith,AIChE J. 3, 147 (1957).Google Scholar
  51. 51.
    F. Vesely, V. Hynek, V. Svoboda, and R. Holub,Coll. Czech. Chem. Comm. 39, 355 (1974).Google Scholar
  52. 52.
    C. C. Tsao and J. M. Smith,Chem. Eng. Progr. Symp. Ser. 49, 197 (1953).Google Scholar
  53. 53.
    G. C. Williams, S. Rosenberg, and H. A. Rothenberg,Ind. Eng. Chem. 40, 1273 (1948).Google Scholar
  54. 54.
    P. S. Murti and M. Van Winkle,J. Chem. Eng. Data 3 65 (1958).Google Scholar
  55. 55.
    D. Bares, M. Soulie, and J. Metzger,J. Chim. Physique Biol. 70, 1531 (1973).Google Scholar
  56. 56.
    I. Brown and W. Fock,Austral. J. Chem. 14, 387 (1961).Google Scholar
  57. 57.
    J. R. Goates, R. L. Snow, and M. R. James,J. Phys. Chem. 65 335 (1961).Google Scholar
  58. 58.
    E. R. Washburn and A. Lightbody,J. Phys. Chem. 34, 2701 (1930).Google Scholar
  59. 59.
    R. V. Mrazek and H. C. Van Ness,AIChE J. 7, 190 (1961).Google Scholar
  60. 60.
    F. Vesely and J. Pick,Coll. Czech. Chem. Comm. 34, 1854 (1969).Google Scholar
  61. 61.
    K.-Y. Hsu and H. L. Clever,J. Chem. Eng. Data 20, 268 (1975).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. Liu
    • 1
  • K. Pusicha
    • 1
  • A. M. Demiriz
    • 1
  • F. Kohler
    • 1
  1. 1.Institute of Thermo- and Fluid-dynamicsRuhr-University BochumBochumGermany

Personalised recommendations