Skip to main content
Log in

Excess molar heat capacities and excess molar volumes of some mixtures of propylene carbonate with aromatic hydrocarbons

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Excess molar volumes VE and excess molar heat capacities C E P at constant pressure have been measured, at 25°C, as a function of composition for the four binary liquid mixtures propylene carbonate (4-methyl-1,3-dioxolan-2-one, C4H6O3; PC) + benzene (C6H6;B), + toluene (C6H5CH3;T), + ethylbenzene (C6H5C2H5;EB), and + p-xylene (p-C6H4(CH3)2;p-X) using a vibrating-tube densimeter and a Picker flow microcalorimeter, respectively. All the excess volumes are negative and noticeably skewed towards the hydrocarbon side: VE (cm3-mol−1) at the minimum ranges from about −0.31 at x1=0.43 for {x1C4H6O3+x2p-C6H4(CH3)2}, to −0.45 at x1=0.40 for {x1C4H6O3+x2C6H5CH3}. For the systems (PC+T), (PC+EB) and (PC+p-X) the C E P s are all positive and even more skewed. For instance, for (PC+T) the maximum is at x 1,max =0.31 with C E P,max =1.91 J-K−1-mol−1. Most interestingly, C E P of {x1C4H6O3+x2C6H6} exhibits two maxima near the ends of the composition range and a minimum at x 1,min =0.71 with C E P,min =−0.23 J-K−1-mol−1. For this type of mixture, it is the first reported case of an M-shaped composition dependence of the excess molar heat capacity at constant pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Simeral and R. L. Amey,J. Phys. Chem. 74, 1443 (1970).

    Google Scholar 

  2. R. Payne and I. E. Theodorou,J. Phys. Chem. 76, 2892 (1972).

    Google Scholar 

  3. H. Bertagnolli, T. Engelhardt, and P. Chieux,Ber. Bunsenges. Phys. Chem. 90, 512 (1986).

    Google Scholar 

  4. H. Bertagnolli, T. Engelhardt, and P. Chieux,Ber. Bunsenges. Phys. Chem. 93, 88 (1989).

    Google Scholar 

  5. Y.-C. Wu and H. L. Friedman,J. Phys. Chem. 70, 501, 2020 (1966).

    Google Scholar 

  6. C. V. Krishnan and H. L. Friedman,J. Phys. Chem. 73, 1572, 3934 (1969).

    Google Scholar 

  7. C. V. Krishnan and H. L. Friedman,J. Phys. Chem. 75, 3598 (1971).

    Google Scholar 

  8. M. Salomon,J. Phys. Chem. 73, 3299 (1969).

    Google Scholar 

  9. M. R. J. Dack, K. J. Bird, and A. J. Parker,Aust. J. Chem. 28, 955 (1975).

    Google Scholar 

  10. R. Aveyard and Y. Thompson,Can. J. Chem. 57, 856 (1979).

    Google Scholar 

  11. A. J. Parker,Chem. Rev. 69, 1 (1969).

    Google Scholar 

  12. A. L. Kohl and P. A. Buckingham,Pet. Refiner 39, 193 (1960).

    Google Scholar 

  13. E. Habenicht, German Patent 2, 401.102 (1975).

  14. V. Rod,Chem. Eng. J. 11, 105 (1976).

    Google Scholar 

  15. B. S. Rawat and I. B. Gulati,J. Appl. Chem. Biotechnol. 26, 425 (1976).

    Google Scholar 

  16. R. M. De Fré and L. A. Verhoeye,J. Appl. Chem. Biotechnol. 26, 469 (1976).

    Google Scholar 

  17. A. A. Gajle, V. A. Proskurjakov, and L. V. Semijonov,Chem. Techn. (Leipzig) 33, 514 (1981).

    Google Scholar 

  18. H.-J. Bittrich and K. Quitzsch,Z. Chem. 22, 368 (1982).

    Google Scholar 

  19. S. J. Ashcroft, A. D. Clayton, and R. B. Shearn,J. Chem. Eng. Data 27, 148 (1982).

    Google Scholar 

  20. M. C. Annesini, R. De Santis, I. Kikic, and L. Marrelli,J. Chem. Eng. Data 29, 39 (1984).

    Google Scholar 

  21. F. Murrieta-Guevara and A. T. Rodriguez,J. Chem. Eng. Data 29, 456 (1984).

    Google Scholar 

  22. M. C. Annesini, F. Gironi, L. Marrelli and I. Kikic,J. Chem. Eng. Data 30, 195 (1985).

    Google Scholar 

  23. N. Rajapakse, H. L. Finston, and V. Fried,J. Chem. Eng. Data 31, 408 (1986).

    Google Scholar 

  24. E. Wilhelm,Thermochim. Acta 94, 47 (1985).

    Google Scholar 

  25. E. Wilhelm,CRC Crit. Rev. Anal. Chem. 16, 129 (1985).

    Google Scholar 

  26. E. Wilhelm, inInteractions of Water in Ionic and Nonionic Hydrates, H. Kleeberg, ed., (Springer Verlag, Berlin, 1987), pp. 117–123.

    Google Scholar 

  27. E. Wilhelm,Thermochim. Acta 162, 43 (1990).

    Google Scholar 

  28. E. Wilhelm, J.-P. E. Grolier, and M. H. Karbalai Ghassemi,Ber. Bunsenges. Phys. Chem. 81, 925 (1977).

    Google Scholar 

  29. E. Wilhelm, J.-P. E. Grolier and M. H. Karbalai Ghassemi,Thermochim. Acta 28, 59 (1979).

    Google Scholar 

  30. E. Wilhelm, A. Faradjzadeh and J.-P. E. Grolier,J. Chem. Thermodyn. 11, 979 (1979).

    Google Scholar 

  31. A. Lainez, G. Roux-Desgranges, J.-P. E. Grolier, and E. Wilhelm,Fluid Phase Equil. 20, 47 (1985).

    Google Scholar 

  32. A. Lainez, J.-P. E. Grolier, and E. Wilhelm,Ber. Bunsenges. Phys. Chem. 89, 809 (1985).

    Google Scholar 

  33. A. Lainez, E. Wilhelm, G. Roux-Desgranges, and J.-P. E. Grolier,J. Chem. Thermodyn. 17, 1153 (1985).

    Google Scholar 

  34. E. Wilhelm, A. Lainez, and J.-P. E. Grolier,Fluid Phase Equil. 49, 239 (1989).

    Google Scholar 

  35. A. Lainez, M. Rodrigo, A. H. Roux, J.-P. E. Grolier, and E. Wilhelm,Calorim. Anal. Therm. 16, 153 (1985).

    Google Scholar 

  36. E. Wilhelm, A. H. Roux, G. Roux-Desgranges, M. Rodrigo, A. Lainez, and J.-P. E. Grolier,Calorim. Anal. Therm. 17, 12 (1986).

    Google Scholar 

  37. F. Kohler, H. Atrops, H. Kalali, E. Liebermann, E. Wilhelm, F. Ratkovics, and T. Salamon,J. Phys. Chem. 85, 2520 (1981).

    Google Scholar 

  38. F. Kohler, R. Gopal, G. Götze, H. Atrops, M. A. Demiriz, E. Liebermann, E. Wilhelm, F. Ratkovics, and B. Palagyi,J. Phys. Chem. 85, 2524 (1981).

    Google Scholar 

  39. C. Casanova, E. Wilhelm, J.-P. E. Grolier, and H. V. Kehiaian,J. Chem. Thermodyn 13, 241 (1981).

    Google Scholar 

  40. E. Wilhelm, A. Inglese, J.-P. E. Grolier, and H. V. Kehiaian,J. Chem. Thermodyn. 14, 33 (1982).

    Google Scholar 

  41. E. Wilhelm, A. Inglese, J.-P. E. Grolier, and H. V. Kehiaian,J. Chem. Thermodyn. 14, 517 (1982).

    Google Scholar 

  42. J.-P. E. Grolier and E. Wilhelm,Fluid Phase Equil. 6, 283 (1981).

    Google Scholar 

  43. T. R. Rettich, Y. P. Handa, R. Battino, and E. Wilhelm,J. Phys. Chem. 85, 3230 (1981).

    Google Scholar 

  44. T. Park, T. R. Rettich, R. Battino, D. Peterson, and E. Wilhelm,J. Chem. Eng. Data 27, 324 (1982).

    Google Scholar 

  45. T. R. Rettich, R. Battino, and E. Wilhelm,Ber. Bunsenges. Phys. Chem. 86, 1128 (1982).

    Google Scholar 

  46. T. R. Rettich, R. Battino, and E. Wilhelm,J. Solution Chem. 13, 335, (1984).

    Google Scholar 

  47. A. Inglese, E. Wilhelm, and J.-P. E. Grolier,37th Annual Calorimetry Conference, Snowbird, Utah, USA, 20–23 July 1982, Paper No. 54.

  48. J.-P. E. Grolier, A. Inglese, and E. Wilhelm,J. Chem. Thermodyn. 16, 67 (1984).

    Google Scholar 

  49. M.-E. Saint-Victor and D. Patterson,Fluid Phase Equil. 35, 237 (1987).

    Google Scholar 

  50. H. Kalali, F. Kohler, and P. Svejda,Monatsh. Chem. 118, 1 (1987).

    Google Scholar 

  51. J. A. Riddick, W. B. Bunger, and T. K. Sakano,Organic Solvents, Physical Properties and Methods of Purification 4th edn., (Wiley, New York, 1986).

    Google Scholar 

  52. J. S. Rowlinson and F. L. Swinton,Liquids and Liquid Mixtures, 3rd edn., (McGraw-Hill, New York, 1982).

    Google Scholar 

  53. P. L. Kronick and R. M. Fuoss,J. Am. Chem. Soc. 77, 6114 (1955).

    Google Scholar 

  54. R. C. Reid, J. M. Prausnitz, and B. E. Poling,The Properties of Gases and Liquids, 4th edn., (McGraw-Hill, New York, 1987).

    Google Scholar 

  55. A. F. M. Barton,CRC Handbook of Solubility Parameters and Other Cohesion Parameters, (CRC Press Boca Raton, FL, 1983), p. 43 (Table 1).

    Google Scholar 

  56. M. Watanabe and R. M. Fuoss,J. Am. Chem. Soc. 78, 527 (1956).

    Google Scholar 

  57. R. P. Seward and E. C. Vieira,J. Phys. Chem. 62, 127 (1958).

    Google Scholar 

  58. R. Kempa and W. H. Lee,J. Chem. Soc. 1936 (1958).

  59. IUPAC,Pure Appl. Chem. 58, 1677 (1986).

    Google Scholar 

  60. J.-P. E. Grolier, E. Wilhelm, and M. H. Hamedi,Ber. Bunsenges. Phys. Chem. 82, 1282 (1978).

    Google Scholar 

  61. G. S. Kell,J. Chem. Eng. Data 20, 97 (1975).

    Google Scholar 

  62. J.-L. Fortier and G. C. Benson,J. Chem. Thermodyn. 8, 411 (1976).

    Google Scholar 

  63. R. Tanaka, O. Kiyohara, P. J. D'Arcy, and G. C. Benson,Can. J. Chem. 53, 2262 (1975).

    Google Scholar 

  64. J.-L. Fortier and G. C. Benson,J. Chem. Thermodyn. 8, 289 (1976).

    Google Scholar 

  65. R. J. Corruccini and D. C. Ginnings,J. Am. Chem. Soc. 69, 2291 (1947).

    Google Scholar 

  66. R. Gopal and S. Agarwal,J. Solution Chem. 5, 257 (1976).

    Google Scholar 

  67. L. A. K. Staveley, K. R. Hart, and W. l. Tupman,Discuss. Faraday Soc. 15, 130 (1953).

    Google Scholar 

  68. F. Kohler,Chem. Techn. (Leipzig) 18, 272 (1966).

    Google Scholar 

  69. M. L. McGlashan, D. Stubley, and H. Watts,J. Chem. Soc.,A, 673 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated at the Festsymposium celebrating Dr. Henry V. Kehiaian's 60th birthday, Clermont-Ferrand, France, 17–18 May 1990.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilhelm, E., Jimenez, E., Roux-Desgranges, G. et al. Excess molar heat capacities and excess molar volumes of some mixtures of propylene carbonate with aromatic hydrocarbons. J Solution Chem 20, 17–28 (1991). https://doi.org/10.1007/BF00651637

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00651637

Key words

Navigation