Astrophysics and Space Science

, Volume 90, Issue 1, pp 45–50 | Cite as

Nonlinear Rayleigh-Taylor instability

  • S. K. Malik
  • M. Singh


The Rayleigh-Taylor instability in hydromagnetics is investigated with the use of the method of multiple scales. It is shown that when the wavenumberK is equal to the critical wavenumberK c , the amplitude modulation of a standing wave can be described by the nonlinear Schrödinger equation from which the nonlinear cutoff wavenumber is subsequently derived.


Amplitude Modulation Standing Wave Multiple Scale Cutoff Wavenumber 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chandrasekhar, S. 1961,Hydrodynamic and Hydromagnetic Stability, Oxford University Press.Google Scholar
  2. Fox, P. A.: 1955,J. Math. Phys. 34, 133.Google Scholar
  3. Lighthill, M. J.: 1951,Aeron. Quart. 3, 193.Google Scholar
  4. Lighthill, M. J.: 1961,Z. Flugwiss. 9, 267.Google Scholar
  5. Kalra, G. L. and Kathuria, S. N.: 1976,J. Plasma Phys. 15, 239.Google Scholar
  6. Kakutani, T. and Sugimoto, N.: 1974,Phys. Fluids 17, 1617.Google Scholar
  7. Kruskal, M. D. and Schwarzschild, M.: 1954,Proc. Roy. Soc. A223, 348.Google Scholar
  8. Malik, S. K. and Singh, M.: 1979,Astrophys. Space Sci. 66, 133.Google Scholar
  9. Nayfeh, A. H.: 1973,Perturbation Methods, Wiley and Sons, New York.Google Scholar
  10. Shivamoggi, B. K.: 1982,J. Plasma Phys. 27, 129.Google Scholar
  11. Whitham, G. B.: 1973,Linear and Non-linear Waves, Wiley and Sons, New York.Google Scholar

Copyright information

© D. Reidel Publishing Co. 1983

Authors and Affiliations

  • S. K. Malik
    • 1
  • M. Singh
    • 1
  1. 1.Department of MathematicsSimon Fraser UniversityBurnabyCanada

Personalised recommendations