Advertisement

Journal of Solution Chemistry

, Volume 21, Issue 8, pp 725–744 | Cite as

pH, Definition and measurement at high temperatures

  • R. E. Mesmer
  • H. F. Holmes
Article

Abstract

In this review paper, the NBS scale and its limitations are briefly discussed. The magnitude of liquid junction potentials and some calculated values are presented. The use of a molality scale for hydrogen electrode concentration cells at high temperatures is described, and results from measurements on ionization equilibria are summarized. Use of this scale is also recommended for certain circumstances with cells without liquid junction. As an alternative activity scale, use of the Pitzer ion-interaction treatment for ions is recommended for special cases. Finally, reference data are presented for γ±HCl in HCl(aq) to 350°C and (HCl+NaCl)(aq) to 200°C that were derived by use of the Pitzer ion-interaction treatment.

Key words

pH acidity liquid junction potentials activity coefficients high temperatures ion association ion-interaction parameters electrolyte mixtures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. F. Baes, Jr. and R. E. Mesmer,The Hydrolysis of Cations (Wiley, New York, 1976).Google Scholar
  2. 2.
    L. G. Sillen and A. E. Martell,Stability Constants of Metal-Ion Complexes (The Chemical Society, Burlington House, London, 1964);Stability Constants Supplement, No. 1 (1971).Google Scholar
  3. 3.
    E. Hogfeldt,Stability Constants of Metal-Ion Complexes, Part A. Inorganic Liquids (Pergamon, New York, 1982).Google Scholar
  4. 4.
    R. G. Bates,Determination of pH (Wiley, New York, 1973).Google Scholar
  5. 5.
    D. Midgley,Talanta 37, 767 (1990).Google Scholar
  6. 6.
    D. A. MacInnes,The Principles of Electrochemistry (Reinhold, New York, 1939).Google Scholar
  7. 7.
    A. S. Quist and W. L. Marshall,J. Phys. Chem. 69, 2984 (1985).Google Scholar
  8. 8.
    D. A. MacInnes and Y. L. Yeh,J. Am. Chem. Soc. 43, 2563 (1921).Google Scholar
  9. 9.
    R. G. Bates, G. D. Pinching, and E. R. Smith,J. Res. Natl. Bur. Stand. 45, 418 (1950).Google Scholar
  10. 10.
    K. S. Pitzer and J. J. Kim,J. Am. Chem. Soc. 96, 5701 (1974).Google Scholar
  11. 11.
    R. T. Pabalan and K. S. Pitzer,Geochim. Cosmochim. Acta 51, 2429 (1987).Google Scholar
  12. 12.
    K. G. Knauss, T. J. Wolery, and K. J. Jackson,Geochem. Cosmochim. Acta 54, 1519 (1990).Google Scholar
  13. 13.
    A. L. Bacarella and A. L. Sutton,J. Electrochem. Soc. 112, 546 (1965).Google Scholar
  14. 14.
    W. L. Bourcier, G. C. Ulmer, and H. L. Barnes, inHydrothermal Experimental Techniques, G. C. Ulmer and H. L. Barnes, eds., (Wiley, New York, 1987) Chap. 7.Google Scholar
  15. 15.
    D. D. Macdonald, A. C. Scott, and P. Wentrcek,J. Electrochem. Soc. 126, 1618 (1979).Google Scholar
  16. 16.
    D. D. Macdonald, A. C. Scott, and P. Wentrcek,J. Electrochem. Soc. 126, 908 (1979).Google Scholar
  17. 17.
    S. Hettiarachchi, P. Kedzierzawski, and D. D. Macdonald,J. Electrochem. Soc. 132, 1866 (1985).Google Scholar
  18. 18.
    R. E. Mesmer, W. L. Marshall, D. A. Palmer, J. M. Simonson, H. F. Holmes,J. Solution Chem. 17, 699 (1988).Google Scholar
  19. 19.
    R. E. Mesmer, C. S. Paterson, R. H. Busey, and H. F. Holmes,J. Phys. Chem. 93, 7483 (1989).Google Scholar
  20. 20.
    A. G. Dickson, D. J. Wesolowski, D. A. Palmer, and R. E. Mesmer,J. Phys. Chem. 94, 7978 (1990).Google Scholar
  21. 21.
    D. A. Palmer and D. J. Wesolowski,J. Solution Chem. 16, 571 (1987).Google Scholar
  22. 22.
    D. J. Wesolowski and D. A. Palmer,J. Solution Chem. 18, 545 (1989).Google Scholar
  23. 23.
    C. F. Baes, Jr. and N. J. Meyer,Inorg. Chem. 1, 780 (1962).Google Scholar
  24. 24.
    R. E. Mesmer and C. F. Baes, Jr.,Inorg. Chem. 6, 1951 (1967).Google Scholar
  25. 25.
    S. Hietanen and L. G. Sillen,Acta Chem. Scand. 13, 533 (1959).Google Scholar
  26. 26.
    G. Biedermann, unpublished.Google Scholar
  27. 27.
    G. Biedermann and L. G. Sillen,Ark. Kemi 5 (40), 425 (1953).Google Scholar
  28. 28.
    S. Hietanen and L. G. Sillen,Acta Chem. Scand. 13, 1828 (1959).Google Scholar
  29. 29.
    G. Biedermann and L. Ciavatta,Acta Chem. Scand. 15, 1347 (1961).Google Scholar
  30. 30.
    R. S. Greeley, W. T. Smith, Jr., M. H. Leitzke, and R. W. Stoughton,J. Phys. Chem. 64, 1445 (1960).Google Scholar
  31. 31.
    M. B. Towns, R. S. Greeley, and M. H. Lietzke,J. Phys. Chem. 64, 1861 (1960).Google Scholar
  32. 32.
    M. H. Lietzke and R. W. Stoughton,J. Phys. Chem. 67, 2573 (1963).Google Scholar
  33. 33.
    M. H. Lietzke and R. W. Stoughton,J. Phys. Chem. 64, 3043 (1964).Google Scholar
  34. 34.
    M. H. Lietzke, H. B. Hupf, and R. W. Stoughton,J. Phys. Chem. 69, 2395 (1965).Google Scholar
  35. 35.
    M. H. Lietzke and R. W. Stoughton,J. Phys. Chem. 70, 756 (1966).Google Scholar
  36. 36.
    M. H. Lietzke and R. W. Stoughton,J. Phys. Chem. 71, 662 (1967).Google Scholar
  37. 37.
    M. H. Lietzke and R. W. Stoughton,J. Phys. Chem. 72, 257 (1968).Google Scholar
  38. 38.
    M. H. Lietzke and H. A. O'Brien, Jr.,J. Phys. Chem. 72, 4408 (1968).Google Scholar
  39. 39.
    M. H. Lietzke and R. W. Stoughton,J. Tenn. Acad. Sci. 44, 66 (1969).Google Scholar
  40. 40.
    M. H. Lietzke, H. B. Hupf, and R. W. Stoughton,J. Inorg. Nucl. Chem. 31, 3481 (1969).Google Scholar
  41. 41.
    H. F. Holmes, R. H. Busey, J. M. Simonson, R. E. Mesmer, D. G. Archer, and R. H. Wood,J. Chem. Thermodyn. 19, 863 (1987).Google Scholar
  42. 42.
    K. S. Pitzer, J. C. Peiper, and R. H. Busey,J. Phys. Chem. Ref. Data 13, 1 (1984).Google Scholar
  43. 43.
    H. S. Hamed,J. Am. Chem. Soc. 57, 1865 (1935).Google Scholar
  44. 44.
    J. M. Simonson, H. F. Holmes, R. H. Busey, R. E. Mesmer, D. G. Archer, and R. H. Wood,J. Phys. Chem. 94, 7675 (1990).Google Scholar

Copyright information

© Plenum Publishing Corporation 1992

Authors and Affiliations

  • R. E. Mesmer
    • 1
  • H. F. Holmes
    • 1
  1. 1.Chemistry DivisionOak Ridge National LaboratoryOak Ridge

Personalised recommendations