Skip to main content
Log in

The oxidation of Cu(I) in electrolyte solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The rates of oxidation of Cu(I) in air saturated solutions was measured as a function of pH, temperature (5–45°C), and ionic strength (0.5 to 6m) in NaCl and NaCl−NaClO4 solutions. In pure NaCl solutions, the effect of pH is independent of ionic strength and temperature. The overall rate constant is given by logk=12.32+0.12(pH)−2064/T−3.69I1/2+ 0.73I The energy of activitation was 39±2 kJ-mol−1 and is independent of ionic strength. At a constant ionic strength (I=1, 3 and 6m) in NaCl−NaClO4 mixtures the Cl dependence of the rates is attributed to the oxidation of the various forms of Cu(I) in the solution. The rate constants for the oxidation of the various species are found to be functions of ionic strength. At a constant ionic strength (I=1) in NaCl−NaClO4 solutions, the effect of temperature is independent of the chloride concentration. The effect of Mg2+ and HCO 3 on the oxidation rate was determined as a function of chloride concentration (1 to 6m) at 25°C and pH=8. The addition of Mg2+ causes the rate to decrease and the addition of HCO 3 causes the rate to increase. The possible causes of these effects are discussed. Empirical equations for the rate of oxidation of Cu(I) in Na-Mg-Cl-HCO3 solutions as a function of composition are used to make reliable estimates of the oxidation in seawater and Red Sea waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Nord,Acta Chem. Scand. 9, 430 (1955).

    Google Scholar 

  2. A. S. Jhaveri and M. M. Sharma,Chem. Eng. Sci. 22, 1 (1967).

    Google Scholar 

  3. P. M. Henry,Inorg. Chem.,5, 688 (1966).

    Google Scholar 

  4. R. D. Gray,J. Am. Chem. Soc. 91, 56 (1969).

    Google Scholar 

  5. L. Graf and S. Fallab,Experientia 20, 46 (1964).

    Google Scholar 

  6. A. D. Zuberbuhler,Helv. Chim. Acta 50, 466 (1967).

    Google Scholar 

  7. A. D. Zuberbuhler,Helv. Chim. Acta 53, 473 (1970).

    Google Scholar 

  8. A. D. Zuberbuhler,Chimica 23, 416 (1969).

    Google Scholar 

  9. I. Pecht and M. Anbar,J. Chem. Soc. Ser. A, 1902 (1968).

  10. A. G. Sokolovskii and B. P. Matseevskii,Izv. Akad. Nauk. Latv. SSR Ser. Khim. 139, (1970); D. P. Feldman and B. P. Matseevskii,Kinetika i Kataliz 15, 1452 (1974).

  11. N. V. Gorbunova, A. P. Purmal, Yu. I. Skurlatov, and S. O. Travin,Int. J. Chem. Kinetics IX, 983 (1977).

    Google Scholar 

  12. O. HayaishiOxygenases (Academic Press, New York, 1962), p. 1.

    Google Scholar 

  13. M. J. Nicol,S. Afr. J. Chem. 37, 77 (1984).

    Google Scholar 

  14. M. A. Fox, R. Cardona, and A. C. Rande,J. Org. Chem. 50, 5016 (1985).

    Google Scholar 

  15. J. W. Moffett and R. G. Zika,Mar. Chem.,13, 239 (1983).

    Google Scholar 

  16. F. J. Millero,Geochim. Cosmochim. Acta 49, 547 (1985).

    Google Scholar 

  17. V. K. Sharma and F. J. Millero,Env. Sci. Technol. in press (1988).

  18. F. J. Millero, M. Izaguirre, and V. K. Sharma,Mar. Chem. 22, 179 (1987).

    Google Scholar 

  19. T. E. Graedel, C. J. Weschler, and M. L. Mandich,J. Geophys. Res. 91, 5205 (1986).

    Google Scholar 

  20. L. Jacobs and S. Emerson,Geochim. Cosmochim. Acta 49, 1433 (1985).

    Google Scholar 

  21. G. W. Filson and J. H. Walton,J. Phys. Chem. 36, 740 (1932).

    Google Scholar 

  22. O. A. Chaltykyan, G. S. Chryan, and G. DartbinyanNauch Trudy Erevan Cosudarst Univ. Ser. Khim. Nauk 53, 95 (1950).

    Google Scholar 

  23. O. A. Chaltykyan and G. S. Chryan,Nauch Trudy Erevan Cosudarst Univ. Ser. Khim. Nauk 60, 125 (1957).

    Google Scholar 

  24. E. Abel,monatsch. Chem. 87, 354 (1956).

    Google Scholar 

  25. A. Gunter and A. D. Zuberbuhler,Chimia,24, 340 (1970).

    Google Scholar 

  26. J. W. Moffett, R. G. Zika, and R. G. Petasne,Anal. Chim. Acta 175, 171 (1985).

    Google Scholar 

  27. F. J. Millero, J. P. Hershey, and M. Fernandez,Geochim. Cosmochim. Acta 51, 707 (1987).

    Google Scholar 

  28. B. B. Benson and D. Krause, Jr.,Limnol. Oceanorg. 29, 620 (1986).

    Google Scholar 

  29. H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolyte Solutions, (Am. Chem. Soc. Mon. Ser. No. 137) (Reinhold, New York, 1958).

    Google Scholar 

  30. K. S. Pitzer,Activity Coefficients R. M. Pytkowicz, ed. (CRC Press, Boca Raton, 1979), Vol. I, p. 157.

    Google Scholar 

  31. F. J. Millero,Thal. Jugoslavia 18, 253 (1982).

    Google Scholar 

  32. F. J. Millero and D. R. Schreiber,Am. J. Sci. 282, 1508 (1982).

    Google Scholar 

  33. J. J. Fritz,J. Phys. Chem. 85, 894 (1981).

    Google Scholar 

  34. S. Ahrland and J. Rawthorne,Acta Chem. Scand. 24, 157 (1970).

    Google Scholar 

  35. J. J. Fritz,J. Phys. Chem. 84, 2241 (1980).

    Google Scholar 

  36. J. J. Fritz,J. Soln. Chem. 13, 369 (1984).

    Google Scholar 

  37. F. J. Millero, A. Mucci, J. Zullig, and P. Chetirkin,Mar. Chem. 11, 463 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, V.K., Millero, F.J. The oxidation of Cu(I) in electrolyte solutions. J Solution Chem 17, 581–599 (1988). https://doi.org/10.1007/BF00651464

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00651464

Key words

Navigation