Journal of Solution Chemistry

, Volume 17, Issue 6, pp 581–599 | Cite as

The oxidation of Cu(I) in electrolyte solutions

  • Virender K. Sharma
  • Frank J. Millero


The rates of oxidation of Cu(I) in air saturated solutions was measured as a function of pH, temperature (5–45°C), and ionic strength (0.5 to 6m) in NaCl and NaCl−NaClO4 solutions. In pure NaCl solutions, the effect of pH is independent of ionic strength and temperature. The overall rate constant is given by logk=12.32+0.12(pH)−2064/T−3.69I1/2+ 0.73I The energy of activitation was 39±2 kJ-mol−1 and is independent of ionic strength. At a constant ionic strength (I=1, 3 and 6m) in NaCl−NaClO4 mixtures the Cl dependence of the rates is attributed to the oxidation of the various forms of Cu(I) in the solution. The rate constants for the oxidation of the various species are found to be functions of ionic strength. At a constant ionic strength (I=1) in NaCl−NaClO4 solutions, the effect of temperature is independent of the chloride concentration. The effect of Mg2+ and HCO 3 on the oxidation rate was determined as a function of chloride concentration (1 to 6m) at 25°C and pH=8. The addition of Mg2+ causes the rate to decrease and the addition of HCO 3 causes the rate to increase. The possible causes of these effects are discussed. Empirical equations for the rate of oxidation of Cu(I) in Na-Mg-Cl-HCO3 solutions as a function of composition are used to make reliable estimates of the oxidation in seawater and Red Sea waters.

Key words

Copper oxidation NaCl solutions ionic strength speciation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Nord,Acta Chem. Scand. 9, 430 (1955).Google Scholar
  2. 2.
    A. S. Jhaveri and M. M. Sharma,Chem. Eng. Sci. 22, 1 (1967).Google Scholar
  3. 3.
    P. M. Henry,Inorg. Chem.,5, 688 (1966).Google Scholar
  4. 4.
    R. D. Gray,J. Am. Chem. Soc. 91, 56 (1969).Google Scholar
  5. 5.
    L. Graf and S. Fallab,Experientia 20, 46 (1964).Google Scholar
  6. 6.
    A. D. Zuberbuhler,Helv. Chim. Acta 50, 466 (1967).Google Scholar
  7. 7.
    A. D. Zuberbuhler,Helv. Chim. Acta 53, 473 (1970).Google Scholar
  8. 8.
    A. D. Zuberbuhler,Chimica 23, 416 (1969).Google Scholar
  9. 9.
    I. Pecht and M. Anbar,J. Chem. Soc. Ser. A, 1902 (1968).Google Scholar
  10. 10.
    A. G. Sokolovskii and B. P. Matseevskii,Izv. Akad. Nauk. Latv. SSR Ser. Khim. 139, (1970); D. P. Feldman and B. P. Matseevskii,Kinetika i Kataliz 15, 1452 (1974).Google Scholar
  11. 11.
    N. V. Gorbunova, A. P. Purmal, Yu. I. Skurlatov, and S. O. Travin,Int. J. Chem. Kinetics IX, 983 (1977).Google Scholar
  12. 12.
    O. HayaishiOxygenases (Academic Press, New York, 1962), p. 1.Google Scholar
  13. 13.
    M. J. Nicol,S. Afr. J. Chem. 37, 77 (1984).Google Scholar
  14. 14.
    M. A. Fox, R. Cardona, and A. C. Rande,J. Org. Chem. 50, 5016 (1985).Google Scholar
  15. 15.
    J. W. Moffett and R. G. Zika,Mar. Chem.,13, 239 (1983).Google Scholar
  16. 16.
    F. J. Millero,Geochim. Cosmochim. Acta 49, 547 (1985).Google Scholar
  17. 17.
    V. K. Sharma and F. J. Millero,Env. Sci. Technol. in press (1988).Google Scholar
  18. 18.
    F. J. Millero, M. Izaguirre, and V. K. Sharma,Mar. Chem. 22, 179 (1987).Google Scholar
  19. 19.
    T. E. Graedel, C. J. Weschler, and M. L. Mandich,J. Geophys. Res. 91, 5205 (1986).Google Scholar
  20. 20.
    L. Jacobs and S. Emerson,Geochim. Cosmochim. Acta 49, 1433 (1985).Google Scholar
  21. 21.
    G. W. Filson and J. H. Walton,J. Phys. Chem. 36, 740 (1932).Google Scholar
  22. 22.
    O. A. Chaltykyan, G. S. Chryan, and G. DartbinyanNauch Trudy Erevan Cosudarst Univ. Ser. Khim. Nauk 53, 95 (1950).Google Scholar
  23. 23.
    O. A. Chaltykyan and G. S. Chryan,Nauch Trudy Erevan Cosudarst Univ. Ser. Khim. Nauk 60, 125 (1957).Google Scholar
  24. 24.
    E. Abel,monatsch. Chem. 87, 354 (1956).Google Scholar
  25. 25.
    A. Gunter and A. D. Zuberbuhler,Chimia,24, 340 (1970).Google Scholar
  26. 26.
    J. W. Moffett, R. G. Zika, and R. G. Petasne,Anal. Chim. Acta 175, 171 (1985).Google Scholar
  27. 27.
    F. J. Millero, J. P. Hershey, and M. Fernandez,Geochim. Cosmochim. Acta 51, 707 (1987).Google Scholar
  28. 28.
    B. B. Benson and D. Krause, Jr.,Limnol. Oceanorg. 29, 620 (1986).Google Scholar
  29. 29.
    H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolyte Solutions, (Am. Chem. Soc. Mon. Ser. No. 137) (Reinhold, New York, 1958).Google Scholar
  30. 30.
    K. S. Pitzer,Activity Coefficients R. M. Pytkowicz, ed. (CRC Press, Boca Raton, 1979), Vol. I, p. 157.Google Scholar
  31. 31.
    F. J. Millero,Thal. Jugoslavia 18, 253 (1982).Google Scholar
  32. 32.
    F. J. Millero and D. R. Schreiber,Am. J. Sci. 282, 1508 (1982).Google Scholar
  33. 33.
    J. J. Fritz,J. Phys. Chem. 85, 894 (1981).Google Scholar
  34. 34.
    S. Ahrland and J. Rawthorne,Acta Chem. Scand. 24, 157 (1970).Google Scholar
  35. 35.
    J. J. Fritz,J. Phys. Chem. 84, 2241 (1980).Google Scholar
  36. 36.
    J. J. Fritz,J. Soln. Chem. 13, 369 (1984).Google Scholar
  37. 37.
    F. J. Millero, A. Mucci, J. Zullig, and P. Chetirkin,Mar. Chem. 11, 463 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1988

Authors and Affiliations

  • Virender K. Sharma
    • 1
  • Frank J. Millero
    • 1
  1. 1.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiami

Personalised recommendations