Astrophysics and Space Science

, Volume 84, Issue 2, pp 409–419 | Cite as

Neutron stars and general equation of nuclear matter

  • M. C. Durgapal
  • R. Bannerji


It has been shown that the mass of neutron stars obtained from equations of state based on nuclear theory depend upon the number of baryons assembled in it but not on the type of interactions considered. On examining the behaviour of different equations of state based on nuclear theories, a simple polytropic equation of state,P = (K/N)(pps)N is proposed. The results obtained forN=1.75 cover the entire range of neutron star masses obtained from the equations of state based on nuclear theories and give a maximum mass of 2.8M. Depending upon various mechanisms for energy output the mass of Crab pulsar is estimated to range from 0.32M to 1.5M. The relation connecting the coordinate mass,M, and the rest mass,M0, may be written asM/M≅0.93 (M0/M)0.9.


Neutron Star Entire Range General Equation Energy Output Nuclear Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldwin, J. E.: 1971, in R.D. Davies and F.G. Smith (eds.), ‘The Crab Nebula’,IAU Symp. 46, 22.Google Scholar
  2. Bethe, H. A. and Johnson, M. B.: 1974,Nucl. Phys. A230, 1.Google Scholar
  3. Bondi, H.: 1964,Proc. Roy Soc. A282, 303.Google Scholar
  4. Borner, G.: 1973,Springer Tracts in Modern Physics, Vol. 69.Google Scholar
  5. Bower, R. L., Gleeson, A. M., and Pedigo, R. D.: 1975,Phys. Rev. D12, 3043.Google Scholar
  6. Brecher, K. and Caporasso, G.: 1976,Nature 259, 377.Google Scholar
  7. Canuto, V.: 1975,Ann. Rev. Astron. Astrophys. 13, 335.Google Scholar
  8. Canuto, V. and Chitre, S. M.: 1974,Phys. Rev. D9, 1587.Google Scholar
  9. Chandrasekhar, S. and Miller, J. C.: 1974,Monthly Notices Roy Astron. Soc. 167, 63.Google Scholar
  10. Cohen, J. M. and Cameron, A. G. W.: 1971,Astrophys. Space Sci. 10, 227.Google Scholar
  11. Durgapal, M. C. and Pande, A. K.: 1980,Indian J. Pure Appl. Phys. 18, 171.Google Scholar
  12. Durgapal, M. C. Pande, A. K., and Pandey, K.: 1979,J. Phys. A12, 859.Google Scholar
  13. Gerlach, U. H.: 1968,Phys. Rev. 172, 1325.Google Scholar
  14. Goldreich, P. and Julian, H. W.: 1969,Astrophys. J. 157, 869.Google Scholar
  15. Gunn, J. E. and Ostriker, J. P.: 1969,Astrophys. J. 157, 1395.Google Scholar
  16. Hartle, J. B.: 1967,Astrophys. J. 150, 1005.Google Scholar
  17. Hartle, J. B. and Sharp, D. H.: 1965,Phys. Rev. Lett. 15, 909.Google Scholar
  18. Hegyi, D. J., Lee, T. S. M. and Cohen, J. M.: 1975,Astrophys. J. 157, L73–79.Google Scholar
  19. Irvine, J. M.: 1978,Neutron Stars, Oxford Univ. Press. Oxford, p. 152.Google Scholar
  20. Moszkowski, S.: 1974,Phys. Rev. D9, 1613.Google Scholar
  21. Oppenheimer, J. R. and Volkoff, G.: 1939,Phys. Rev. 55, 374.Google Scholar
  22. Pandharipande, V. R.: 1971,Nucl. Phys. A178, 123.Google Scholar
  23. Rhoades, C. E. and Ruffini, R.: 1974,Phys. Rev. Lett. 32, 324.Google Scholar
  24. Walecka, J. C.: 1974,Ann. Phys. 83, 491.Google Scholar
  25. Zeldovich, Ya. B.: 1962,Soviet Phys. JETP 14, 1143.Google Scholar

Copyright information

© D. Reidel Publishing Co 1982

Authors and Affiliations

  • M. C. Durgapal
    • 1
  • R. Bannerji
    • 1
  1. 1.Department of Physics, DSB Constituent CollegeKumaun UniversityNainitalIndia

Personalised recommendations