Astrophysics and Space Science

, Volume 105, Issue 1, pp 109–130 | Cite as

Flat rotation curves according to the fragmentation/shear flow model of galaxy formation

  • Wilbur K. Brown


Initial conditions are derived from the fragmentation/shear flow model of galaxy formation and are used as input to the viscous action presumed to begin as soon as a galactic disk forms. A simple differential equation is found to describe the turbulent viscous evolution of a flat disk. Solutions to this equation produce rotation curves that closely resemble those observed in spiral and elliptical galaxies. For spirals, by using the mass distributions derived from the rotation curves and from Seiden's theory of star formation, exponential luminosity profiles are produced.


Differential Equation Mass Distribution Flow Model Star Formation Rotation Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ables, H. D.: 1968, ‘Optical Study of Nearby Galaxies’, Ph.D. dissertation, Univ. of Texas at Austin; University Microfilms, Inc., Ann Arbor, Michigan.Google Scholar
  2. Ables, H. D.: 1971,Publ. U.S. Naval Obs., Ser. 2. 20, 3.Google Scholar
  3. Bertola, F. and Capaccioli, M.: 1975,Astrophys. J. 200, 439.Google Scholar
  4. Boroson, T.: 1981,Astrophys. J. Suppl. 46, 177.Google Scholar
  5. Bosma, A.: 1981,Astron. J. 86, 1825.Google Scholar
  6. Brandt, J. C.: 1960,Astrophys. J. 131, 293.Google Scholar
  7. Brown, W. K.: 1972,Astrophys. Space Sci. 15, 293.Google Scholar
  8. Brown, W. K.: 1978,Astrophys. Space Sci. 54, 365.Google Scholar
  9. Brown, W. K.: 1980,Astrophys. Space Sci. 72, 15.Google Scholar
  10. Brown, W. K.: 1981,Spec. Sci. Tech. 4, 415.Google Scholar
  11. Brown, W. K. and Gritzo, L. A.: 1980,Astrophys. Space Sci. 70, 493.Google Scholar
  12. Brown, W. K., Karpp, R. R., and Grady, D. E.: 1983,Astrophys. Space Sci. 94, 401.Google Scholar
  13. Burstein, D.: 1979,Astrophys. J. Suppl. 41, 435.Google Scholar
  14. Busse, F. H.: 1976,Icarus 29, 255.Google Scholar
  15. Elmegreen, D. M. and Elmegreen, B. G.: 1983,Astrophys. J. Suppl. 54, 127.Google Scholar
  16. Freeman, K. C.: 1970,Astrophys. J. 160, 811.Google Scholar
  17. Hohl, F.: 1976,Astron. J. 81, 30.Google Scholar
  18. Kormendy, J.: 1977,Astrophys. J. 217, 406.Google Scholar
  19. Larson, R. B.: 1975,Monthly Notices Roy. Astron. Soc. 173, 671.Google Scholar
  20. Lynden-Bell, D. and Pringle, J. E.: 1974,Monthly Notices Roy. Astron. Soc. 168, 603.Google Scholar
  21. Milgrom, M.: 1983a,Astrophys. J. 270, 365.Google Scholar
  22. Milgrom, M.: 1983b,Astrophys. J. 270, 371.Google Scholar
  23. Milgrom, M.: 1983c,Astrophys. J. 270, 384.Google Scholar
  24. Oort, J. H.: 1965,IAU Trans. 12A, 789.Google Scholar
  25. Ostriker, J. P. and Peebles, P. J. E.: 1973,Astrophys. J. 186, 467.Google Scholar
  26. Rubin, V. C.: 1983,Science 220, 1339.Google Scholar
  27. Rubin, V. C., Ford, W. K., Jr., and Thonnard, N.: 1978a,Astrophys. J. 225, L107.Google Scholar
  28. Rubin, V. C., Ford, W. K., Jr., Strom, K. M., Strom, S. E., and Romanishin, W.: 1978b,Astrophys. J. 224, 782.Google Scholar
  29. Rubin, V. C., Ford, W. K., Jr., and Thonnard, N.: 1980,Astrophys. J. 238, 471.Google Scholar
  30. Rubin, V. C., Ford, W. K., Jr., Thonnard, N., and Burstein, D.: 1982,Astrophys. J. 261, 439.Google Scholar
  31. Seiden, P. E.: 1983,Astrophys. J. 266, 555.Google Scholar
  32. Seiden, P. E., Schulman, L. S., and Elmegreen, B. G.: 1984,Astrophys. J. (in press).Google Scholar
  33. van der Kruit, P. C.: 1979,Astron. Astrophys. Suppl. 38, 15.Google Scholar
  34. van der Kruit, P. C. and Searle, L.: 1981,Astron. Astrophys. 95, 105.Google Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • Wilbur K. Brown
    • 1
  1. 1.Los Alamos National LaboratoryLos AlamosUSA

Personalised recommendations