Astrophysics and Space Science

, Volume 40, Issue 1, pp 167–181 | Cite as

Some cosmological models with spin and torsion

II: Axially symmetric models with a uniform magnetic field
  • B. Kuchowicz


In axially-symmetric cosmological models of the Einstein-Cartan theory (which may be briefly called ‘general relativity plus spin’), the axis of symmetry is at the same time the direction of the magnetic field, and of the aligned spins. The general set of relevant equations is given. Some exact solutions of this set constitute quasi-Euclidean and semiclosed cosmologies with a uniform magnetic field and aligned spinning matter. In contrast to the situation in the framework of general relativity, one may obtain non-singular solutions. Such a behaviour of the solutions of the Einstein-Cartan theory is rendered possible by the specific spin-spin repulsive interaction which is inherent in the theory.


Magnetic Field Exact Solution General Relativity Cosmological Model Repulsive Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bertotti, B.: 1959,Phys. Rev. 116, 1331.Google Scholar
  2. Doroshkevich, A. G.: 1965,Astrofizika 1, 255.Google Scholar
  3. Ehlers, J.: 1973, in W. Israel (ed.),Relativity, Astrophysics and Cosmology, D. Reidel Publ. Co., Dordrecht and Boston.Google Scholar
  4. Ellis, G. F. R.: 1967,J. Mathematical Phys. 8, 1171.Google Scholar
  5. Ellis, G. F. R.: 1971, in R. K. Sachs (ed.),General Relativity and Cosmology, Proceedings of the International School of Physics ‘E. Fermi’, Course XLVII, Academic Press, New York.Google Scholar
  6. Hughston, L. and Jacobs, K.: 1970,Astrophys. J. 160, 147.Google Scholar
  7. Jacobs, K. C.: 1968,Astrophys. J. 153, 661.Google Scholar
  8. Jacobs, K. C.: 1969,Astrophys. J. 155, 379.Google Scholar
  9. Kantowski, R.: 1966, unpublished.Google Scholar
  10. Kantowski, R. and Sachs, R. K.: 1966,J. Math. Phys. 7, 443.Google Scholar
  11. Kompaneets, A. S. and Chernov, A. S.: 1964,Zhurn. Eksp. Teor. Fiz. 47, 1939.Google Scholar
  12. Kuchowicz, B.: 1975a,Astrophys. Space Sci. 39, 157.Google Scholar
  13. Kuchowicz, B.: 1975b,Phys. Letters 54A, 13.Google Scholar
  14. Kuchowicz, B.: 1975c, ‘Cosmology Without Singularity’, essay awardedHonorable Mention in the Gravity Research Foundation Essay Competition.Google Scholar
  15. Kuchowicz, B.: 1975d,J. Phys. A: Math. Gen. 8, L29.Google Scholar
  16. Kuchowicz, B.: 1975e,Acta Cosmologica (Kraków) 3, 109.Google Scholar
  17. Kuchowicz, B.: 1975f,Current Science 44, 537.Google Scholar
  18. Rosen, G.: 1962,J. Math. Phys. 3, 313.Google Scholar
  19. Rosen, G.: 1964,Phys. Rev. 136, B297.Google Scholar
  20. Shikin, I. S.: 1966,Dokl. Akad. Nauk SSSR 171, 73.Google Scholar
  21. Stewart, J. M. and Ellis, G. F. R.: 1968,J. Math. Phys. 9, 1072.Google Scholar
  22. Thorne, K. S.: 1967,Astrophys. J. 148, 51.Google Scholar
  23. Vajk, J. P. and Eltgroth, P. G.: 1970,J. Math. Phys. 11, 2212.Google Scholar

Copyright information

© D. Reidel Publishing Company 1976

Authors and Affiliations

  • B. Kuchowicz
    • 1
  1. 1.Dept. of Radiochemistry and Radiation ChemistryUniversity of WarsawPoland

Personalised recommendations