Advertisement

Astrophysics and Space Science

, Volume 59, Issue 1, pp 215–221 | Cite as

The nature of one mechanism of solar differential rotation

  • A. A. Ruzmaikin
  • S. I. Vainshtein
Article

Abstract

The mechanism of the solar differential rotation usually ascribed to an anisotropic viscosity action is shown to be caused by Coriolis forces which influence anisotropic convective elements in a stratified medium. The estimation of an anisotropy parameters as a function of the convective zone depth is given. The value of (s−1) is positive near the solar surface and negative at the convective zone base, which is in good agreement with observations and the dynamo theory.

Keywords

Viscosity Anisotropy Coriolis Force Anisotropy Parameter Convective Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, N. and Temesváry, S.: 1966,The Tables of Convective Stellar Envelope Models, New York.Google Scholar
  2. Bumba, V., Howard, R. and Smith, S. F.: 1964,Carnegie Inst. of Washington Yearbook 63, 6.Google Scholar
  3. Durney, B. B.: 1976, ‘The Theories of Solar Rotation’, in V. Bumba and J. Kleczek (eds),Basic Mechanism of Solar Activity, IAU Symp. 71, 243.Google Scholar
  4. Howard, R. and Harvey, J.: 1970,Solar Phys. 12, 23.Google Scholar
  5. Ivanova, T. S. and Ruzmaikin, A. A.: 1977,Astron. J. (USSR) 54, 846.Google Scholar
  6. Kippenhahn, R.: 1963,Astrophys. J. 137, 664.Google Scholar
  7. Köhler, H.: 1970,Solar Phys 13, 3.Google Scholar
  8. Landau, L. D. and Lifshitz, E. M.: 1959,Fluid Mechanics, Pergamon Press, London.Google Scholar
  9. Landau, L. D. and Lifshitz, E. M.: 1965,Statistical Physics, Pergamon Press, London.Google Scholar
  10. Newton, H. W. and Nunn, M. L.: 1951,Monthly Notices Roy. Astron. Soc. 111, 413.Google Scholar
  11. Rüdiger, G.: 1974,Astron. Nachr. 295, 229.Google Scholar
  12. Sakurai, T.: 1966,Publ. Astron. Soc. Japan 18, 174Google Scholar
  13. Steenbeck, M. and Krause, F.: 1969,Astron. Nachr. 291, 49.Google Scholar
  14. Stix, M.: 1976, “Dynamo Theory and the Solar Cycle”, in V. Bumba and J. Kleczek (eds),Basic Mechanisms of Solar Activity, IAU Symp. 71, 367.Google Scholar
  15. Vainshtein, S. I.: 1971,JETP (USSR) 61, 612.Google Scholar
  16. Vainshtein, S. I.: 1978,Magnitnaya Gidrodinamica 1, 45.Google Scholar
  17. Wasiutynski, J.: 1946,Astrophys. Norv. 4, 86.Google Scholar
  18. Yoshimura, H.: 1975,Astrophys. J. Supp. Ser. 29, No. 294.Google Scholar

Copyright information

© D. Reidel Publishing Company 1978

Authors and Affiliations

  • A. A. Ruzmaikin
    • 1
  • S. I. Vainshtein
    • 2
  1. 1.Institute of Applied MathematicsAcademy of Science U.S.S.R.MoscowU.S.S.R.
  2. 2.Siberian Institute of Terrestrial Magnetism and Radiowave PropagationAcademy of Science U.S.S.R.IrkutskU.S.S.R.

Personalised recommendations