Journal of Solution Chemistry

, Volume 18, Issue 7, pp 663–673 | Cite as

Thermal and volumetric properties of chloroform + dimethylsulfoxide: Thermodynamic analysis using the ideal associated solution model

  • L. Barta
  • Z. S. Kooner
  • L. G. Hepler
  • G. Roux-Desgranges
  • J. -P. E. Grolier
Article

Abstract

We have made new measurements of partial molar enthalpies of solution, excess heat capacities, and excess volumes of mixtures of chloroform and dimethylsulfoxide. In combination with published vapor pressures and excess enthalpies the results of these measurements have been analyzed within the context of the ideal associated solution model to yield ΔC p ϑ and ΔVϑ for the formation of AB and A2B complexes. It is shown that the ideal associated solution model is consistent with all of the available thermodynamic data for this system, indicating that nearly all of the deviations of this system from ideal solution behavior can be accounted for in terms of chemical interactions of the two components.

Key words

Ideal associated solution model complex formation hydrogen bonding heat capacities chloroform dimethylsulfoxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. G. Hepler, Z. S. Kooner, G. Roux-Desgranges, and J.-P. E. Grolier,J. Solution Chem. 14, 579 (1985).Google Scholar
  2. 2.
    J.-P. E. Grolier, G. Roux-Desgranges, Z. S. Kooner, J. F. Smith, and L. G. Hepler,J. Solution Chem. 16, 745 (1987).Google Scholar
  3. 3.
    J. F. Smith and L. G. Hepler, manuscript in preparation.Google Scholar
  4. 4.
    J. F. Smith and L. G. Hepler, manuscript in preparation.Google Scholar
  5. 5.
    M. L. McGlashan and R. P. Rastogi,Trans. Faraday Soc. 54, 496 (1958).Google Scholar
  6. 6.
    T. Matsui, L. G. Hepler, and D. V. Fenby,J. Phys. Chem. 77, 2397 (1973).Google Scholar
  7. 7.
    K. W. Morcom and D. N. Travers,Trans. Faraday Soc. 61, 230 (1965).Google Scholar
  8. 8.
    E. R. Kearns,J. Phys. Chem. 65, 314 (1961).Google Scholar
  9. 9.
    D. V. Fenby and L. G. Hepler,J. Chem. Thermodyn. 6, 185 (1974).Google Scholar
  10. 10.
    P. Picker, P. A. Leduc, P. R. Philip, and J. E. Desnoyers,J. Chem. Thermodyn. 3, 631 (1971).Google Scholar
  11. 11.
    P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).Google Scholar
  12. 12.
    L. G. Hepler and D. V. Fenby,J. Chem. Thermodyn. 5, 471 (1973).Google Scholar
  13. 13.
    C. F. Lau, P. T. Wilson, and D. V. Fenby,Aust. J. Chem. 23, 1143 (1970).Google Scholar
  14. 14.
    R. Philippe, J. Jose, and P. Clechet,Bull. Soc. Chim. Fr. 2866 (1971).Google Scholar
  15. 15.
    D. V. Fenby, G. J. Billing, and D. B. Smythe,J. Chem. Thermodyn. 5, 49 (1973).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • L. Barta
    • 1
  • Z. S. Kooner
    • 1
  • L. G. Hepler
    • 1
  • G. Roux-Desgranges
    • 2
  • J. -P. E. Grolier
    • 2
  1. 1.Department of ChemistryUniversity of AlbertaEdmontonCanada
  2. 2.Laboratoire de Thermodynamique et Cinetique ChimiqueUniversité de Clermont-Ferrand 2AubiéreFrance

Personalised recommendations