Abstract
The limiting equivalent conductances at temperatures from 0° to 1000°C and pressures from 1 to 5000 bars of a large number of aqueous ions have been calculated from limiting equivalent conductances of electrolytes reported in the literature. The limiting equivalent conductances of individual ions typically increase by a factor of about 15 with increasing temperatures from 0° to 1000°C and decrease about 30 percent with increasing pressure from 1 to 5 kb. The equivalent conductance of H2O approximated by the sum of the limiting equivalent conductances of H+ and OH− is essentially independent of pressure, but increases from about 350 to a maximum of approximately 1800 S-cm2-equiv−1 in response to an increase in temperature from 0° to 500°C at 1kb. Stokes' law radii and Walden products generated from the computed limiting equivalent conductances of ions exhibit changes over the temperature and pressure range of interest by as much as 100 percent for all of the ions except H+ and OH−, which vary by an order of magnitude. Apparent solvation numbers calculated as a function of pressure and temperature from the Stokes' law radii using the volume and dielectric constant of H2O and Born coefficients of the individual ions approach infinity at the critical point of H2O. Residual friction coefficients as a general rule approach zero as temperatures increases to 1000°C. The excess limiting equivalent conductances of the hydrogen and hydroxyl ions computed from the differences between the limiting equivalent conductances of HCl and KCl, and NaOH and NaCl, respectively, increases with increasing pressure, and maximize at 250°C.
Similar content being viewed by others
References
A. S. Quist and W. L. Marshall,J. Phys. Chem. 69, 2984 (1965).
B. S. Smolyakov and G. A. Veselova,Electrokhimiya 10, 851 (1974).
B. S. Smolyakov and G. A. Veselova,Electrokhimiya 11, 635 (1975).
W. L. Marshall,J. Chem. Phys. 87, 8301 (1987).
J. K. Fogo, S. W. Benson, and C. S. Copland,J. Chem. Phys. 22, 212 (1954).
E. U. Franck,Ziet. fur Phys. Chemie 8, 92 (1956).
A. S. Quist, E. U. Franck, H. R. Jolley, and W. L. Marshall,J. Phys. Chem. 67, 2453 (1963).
A. S. Quist, W. L. Marshall, and H. R. Jolley,J. Phys. Chem. 69, 2726 (1965).
A. S. Quist and W. L. Marshall,J. Phys. Chem. 70, 3714 (1966).
A. S. Quist and W. L. Marshall,J. Phys. Chem. 72, 684 (1968).
A. S. Quist and W. L. Marshall,J. Phys. Chem. 72, 1545 (1968).
A. S. Quist and W. L. Marshall,J. Phys. Chem. 72, 2100 (1968).
A. S. Quist and W. L. Marshall,J. Phys. Chem. 72, 3122 (1968).
G. Ritzert and E. U. Franck,Ber. Bunsenges. Physik. Chem. 73, 798 (1968).
K. Mangold and E. U. Franck,Ber. Bunsenges. Physik. Chem. 74, 21 (1969).
L. A. Dunn and W. L. Marshall,J. Phys. Chem. 73, 723 (1969).
J. D. Frantz and W. L. Marshall,Am. J. Sci. 282, 1666 (1982).
J. D. Frantz and W. L. Marshall,Am. J. Sci. 284, 651 (1984).
E. H. Oelkers and H. C. Helgeson,Geochim. Cosmochim. Acta 52, 63 (1988).
E. H. Oelkers and H. C. Helgeson,Geo. Soc. Am. Abstracts with Programs 16, 612 (1984).
A. S. Quist and W. L. Marshall,J. Phys. Chem. 73, 987 (1969).
E. H. Oelkers and H. C. Helgeson,J. Phys. Chem. 92, 1631 (1988).
J. C. Tanger and H. C. Helgeson,Am. J. Sci. 288, 19 (1988).
E. L. Shock, E. H. Oelkers, J. W. Johnson, D. A. Sverjensky, and H. C. Helgeson,J. Chem. Soc. Faraday Trans. (in preparation).
E. L. Shock, H. C. Helgeson, and D. A. SverjenskyGeochim. Cosmochim. Acta,53, (1989) (in press).
E. L. Shock, and H. C. Helgeson,Geochim. Cosmochim. Acta 52, 2009 (1988).
E. L. Shock, and H. C. Helgeson,Geochim. Cosmochim. Acta 53, (1989) (in press).
D. A. Sverjensky, E. L. Shock, and H. C. Helgeson,Geochim. Cosmochim. Acta 53, (1989), (in press).
C. A. Angell,Ann. Rev. Phys. Chem. 34, 593 (1983).
H. C. Helgeson and D. H. Kirkham,Am. J. Sci. 274, 1098 (1974).
K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).
J. Smith and E. B. Dismukes,J. Phys. Chem. 68, 1603 (1964).
H. G. David and S. D. Hamann,Trans. Faraday Soc. 55, 72 (1959).
A. A. Brish, M. S. Tarasov, and V. A. Tsukerman,Soviet Phys.-JEPT 11, 15 (1960).
A. W. Lawson and A. J. Hughes, inHigh Pressure Physics and Chemistry R. S. Stanely ed., (Acedemic Press, London), 207 (1963).
S. D. Hamann and M. Linton,Trans. Faraday Soc. 62, 2234 (1966).
W. Holtzapfel and E. U. Franck,Ber. Bunsenges. 70, 1105 (1966).
W. Holtzapfel,J. Chem. Phys. 50, 4424 (1969).
K. Tödehide, inWater A Comprehensive Treatise-Volume 1-The Physics and Physical Chemistry of Water F. Franks ed., (Plenum Press, New York, 1972).
W. L. Marshall,J. Chem. Eng. Data 32, 221 (1987).
J. T. R. Watson, R. S. Batu, and J. V. Sengers,J. Phys. Chem. Ref. Data 9, 1255 (1980).
R. L. Kay, inWater A Comprehensive Treatise Volume 3 Aqueous Solutions of Simple Electrolytes F. Franks ed., (Plenum Press, New York, 1973).
B. E. Conway,Ionic Hydration in Chemistry and Biophysics, (Elsevier Scientific Publishing Company, New York, 1981).
P. Walden,Z. Physik. Chem. 55, 207, 246 (1906).
M. Nakahara and K. Ibuki,J. Phys. Chem. 90, 1026 (1986).
Y. Marcus,Ion Solvation, (John Wiley and Sons Limited, New York, 1985).
H. Ulich,Trans. Faraday Trans. 23, 388 (1927).
H. C. Helgeson and D. K. Kirkham,Am. J. Sci. 276, 97 (1976).
H. C. Helgeson, G. C. Flowers, and D. H. Kirkham,Am. J. Sci. 281, 1249 (1981).
L. Haar, J. Gallagher, and G. Kell,NBS/NRC Steam Tables, (Hemisphere Press, Washington, 1984).
R. Zwanzig,J. Chem. Phys. 52, 3625 (1970).
J. Hubbard, L. Onsager,J. Chem. Phys. 67, 4850 (1977).
J. Hubbard,J. Chem. Phys. 68, 1649 (1978).
P. G. Wolynes,Ann. Rev. Phys. Chem. 31, 345 (1980).
H. Danneel,Electrochem. 11, 125 (1905).
E. Hückel,Electrochem. 34, 546 (1928).
J. D. Bernal and R. H. Fowler,J. Chem. Phys. 1, 515 (1933).
A. E. Sterne and H. Eyring,J. Chem. Phys. 5, 113 (1937).
B. C. Conway, J. O'M Brockris, and H. Linton,J. Chem. Phys. 24, 834 (1956).
T. Erdey-Gruz and S. Lengyel, inModern Aspects of Electrochemistry # 12, J O'M Brockris and B. E. Conway eds., (Plenum Press, New York, 1977).
S. D. Hamann,Physico-chemical Effects of Pressure, (Butterworth, London, 1956).
R. A. Horne and R. A. Courant,J. Phys. Chem. 69, 2224 (1965).
D. A. Lown and H. R. Thirsk,Trans. Faraday Soc. 67, 149 (1971).
H. Goldsmith and P. Dahl,Z. Phys. Chem. 108, 121 (1924).
P. Walden,Z. Phys. Chem. 108, 341 (1924).
G. Kortum and H. Wilski,Z. Phys. Chem. N. F. 2, 256 (1954).
L. A. Woolf,J. Phys. Chem. 64, 500 (1960).
T. Erdey-Gruz, E. Kugler, and L. Majthenyi,Electrochim. Acta 13, 947 (1968).
R. A. Robinson and R. H. Stokes,Electrolyte Solutions, (Butterworths, New York, 1968).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Oelkers, E.H., Helgeson, H.C. Calculation of the transport properties of aqueous species at pressures to 5 KB and temperatures to 1000°C. J Solution Chem 18, 601–640 (1989). https://doi.org/10.1007/BF00650999
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF00650999