Skip to main content
Log in

Partial molar heat capacities of selected electrolytes and benzene in methanol and dimethylsulfoxide at 25, 40, and 80°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A high temperature-high pressure flow heat capacity calorimeter, designed to operate to 350°C and 20 Mpa, has been constructed and tested with aqueous sodium chloride solutions to 80°C. The calorimeter has been used to measure the specific heats for solutions of NaBr, NaClO4, φ4PBR, NaBφ4, and benzene in methanol (MeOH) and dimethylsulfoxide (DMSO) at 40 and 80°C. A commercial calorimeter was used to measure the same systems at 25°C. Apparent molar heat capacities C>p,ϕ have been evaluated and extrapolated to infinite dilution to obtain standard partial molar heat capacities\(\bar C_{p,2}^{\text{o}} \). For electrolytes\(\bar C_{p,2}^{\text{o}} \) are positive and insensitive to temperature to 80°C in DMSO, but in MeOH, C 0p, 2 for simple electrolytes are negative and become increasingly negative with temperature. The behavior in MeOH is attributed to strong electrostriction by ionic charge and solvation of anions by MeOH molecules which increases with temperature. This is similar to observed behavior of electrolytes in water above 100°C. For benzene\(\bar C_{p,2}^{\text{o}} \) is positive in MeOH and DMSO, and increases with temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chang and C. M. Criss,J. Solution Chem. 2, 457 (1973).

    Google Scholar 

  2. D. Smith-Magowan and R. H. Wood,J. Chem. Thermodyn. 13, 1047 (1981).

    Google Scholar 

  3. C. M. Criss and J. W. Cobble,J. Am. Chem. Soc. 83, 3223 (1961);ibid. 86, 5390 (1964).

    Google Scholar 

  4. E. C. Jekel, C. M. Criss, and J. W. Cobble,J. Am. Chem. Soc. 86, 5404 (1964).

    Google Scholar 

  5. Y-S. Choi and C. M. Criss,Disc. Faraday Soc. 64, 204 (1978).

    Google Scholar 

  6. J. I. Lankford, Ph.D. Dissertation, University of Miami (1985).

  7. P. Picker, P. A. Leduc, P. R. Philip, and J. E. Desnoyers,J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  8. J. I. Lankford, W. T. Holladay, and C. M. CrissJ. Solution Chem. 13, 699 (1984).

    Google Scholar 

  9. R. Zana, G. A. Lage, and C. M. Criss,J. Solution Chem. 9, 667 (1980).

    Google Scholar 

  10. J. I. Lankford and C. M. Criss,J. Solution Chem. (1987) (in press).

  11. P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  12. C-T. Chen, R. A. Fine, and F. J. Millero,J. Chem. Phys. 66, 2142 (1977).

    Google Scholar 

  13. R. C. Wilhoit and B. J. Zwolinski,J. Phys. Chem. Ref. Data 2, Suppl. No. 1, 1–23 (1973).

    Google Scholar 

  14. R. N. French and C. M. Criss,J. Solution Chem. 11, 625 (1982).

    Google Scholar 

  15. A. J. Pasztor and C. M. Criss,J. Solution Chem. 7, 27 (1978).

    Google Scholar 

  16. J. E. Desnoyers, C. de Visser, G. Perron, and P. Picker,J. Solution Chem. 5, 605 (1976).

    Google Scholar 

  17. K. S. Pitzer, J. C. Peiper, and R. H. Busey,J. Phys. Chem. Ref. Data 13, 1 (1984).

    Google Scholar 

  18. J. E. Tanner and F. W. Lamb,J. Solution Chem. 7, 303 (1978).

    Google Scholar 

  19. E. C. W. Clarke and D. N. Glew,J. Phys. Chem. Ref. Data 14, 489 (1985).

    Google Scholar 

  20. R. N. French and C. M. Criss,J. Solution Chem. 10, 699 (1981).

    Google Scholar 

  21. C. Shin and C. M. Criss,J. Solution Chem. 15, 307 (1986).

    Google Scholar 

  22. M. J. Mastroianni and C. M. Criss,J. Chem. Eng. Data 17, 222 (1972).

    Google Scholar 

  23. K. K. Kelley,Contributions to the Data on Theoretical Metallurgy, XIII. ‘High Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds’, Bull. 584, (Bureau of Mines, Washington, 1960).

    Google Scholar 

  24. R. N. French and C. M. Criss,J. Solution Chem. 10, 713 (1981).

    Google Scholar 

  25. R. N. French and C. M. Criss,J. Solution Chem. 10, 231 (1981).

    Google Scholar 

  26. S. W. Benson, F. R. Cruickshank, D. M. Golden, G. R. Haugen, H. E. O'Neal, A. S. Rodgers, R. Shaw, and R. Walsh,Chem. Rev. 69, 279 (1969).

    Google Scholar 

  27. S. W. Benson and J. H. Buss,J. Chem. Phys. 29, 546 (1958).

    Google Scholar 

  28. A. Loewenschuss and Y. Marcus,J. Phys. Chem. Ref. Data 16 No. 1, 61 (1987).

    Google Scholar 

  29. R. M. Noyes,J. Am. Chem. Soc. 86, 971 (1964).

    Google Scholar 

  30. E. U. Franck and R. Deul,Disc. Faraday Soc. 55, 191 (1979).

    Google Scholar 

  31. K. R. Srinivasan and R. L. Kay,J. Solution Chem. 4, 299 (1975).

    Google Scholar 

  32. H. Kienitz and K. N. Marsh,Pure and Appl. Chem. 53, 1847 (1981).

    Google Scholar 

  33. J. Timmermans,Physico-chemical Constants of Pure Organic Compiunds, Vols. 1 and 2, (Elsevier, Amsterdam, 1950 and 1965).

    Google Scholar 

  34. P. G. Sears, R. R. Holmes, and L. R. Dawson,J. Electrochem. Soc. 102, 145 (1955).

    Google Scholar 

  35. E. Schadow and R. Steiner,Z. Phys. Chem. Neue Folge 66, 105 (1969).

    Google Scholar 

  36. E. L. Cussler and R. M. Fuoss,J. Phys. Chem. 71, 4459 (1967).

    Google Scholar 

  37. W. Danhauser and L. W. Bahe,J. Chem. Phys. 40, 3058 (1964).

    Google Scholar 

  38. P. S. Albright and L. J. Gosting,J. Am. Chem. Soc. 68, 1061 (1946).

    Google Scholar 

  39. H. Hartmann, A. Neumann, and G. Rinck,Z. Phys. Chem. Neue Folge 44, 204, 218 (1965).

    Google Scholar 

  40. A. A. Maryott and E. R. Smith,Table of Dielectric Constants of Pure Liquids, NBS Circular No. 514, (U.S. Gov't. Printing Office, Washington, 1951);Tables of Dielectric Dispersion Data for Pure Liquids and Dilute Solutions, NBS Circular No. 589, (U.S. Gov't Printing Office, Washington, 1958).

    Google Scholar 

  41. J. A. Lane and J. A. Saxton,Proc. Roy. Soc. (London)A213, 400 (1952).

    Google Scholar 

  42. R. L. Kay, C. Zawoyski, and D. F. Evans,J. Phys. Chem. 69, 4208 (1965).

    Google Scholar 

  43. J. Barthel, R. Wachter, and H-J. Gores, inModern Aspects of Electrochemistry, Vol. 13, B. E. Conway and J. O'M. Bockris eds., (Plenum Press, New York, 1979).

    Google Scholar 

  44. H. P. Bennetto, G. F. Evans, and R. J. Sheppard,J. Chem. Soc. Faraday Trans. I 79, 245 (1983).

    Google Scholar 

  45. P. Winsor, IV, and R. H. Cole,J. Phys. Chem. 86, 2486 (1982).

    Google Scholar 

  46. E. S. Amis,J. Phys. Chem. 60, 428 (1956).

    Google Scholar 

  47. H. S. Harned and B. B. Owen,The Physical Chemistry of Electrolytic Solutions, 3rd ed., (Reinhold, New York, 1958) Chap. 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lankford, J.I., Criss, C.M. Partial molar heat capacities of selected electrolytes and benzene in methanol and dimethylsulfoxide at 25, 40, and 80°C. J Solution Chem 16, 885–906 (1987). https://doi.org/10.1007/BF00650993

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650993

Key words

Navigation