Skip to main content
Log in

Vapor pressure measurements on nonaqueous solutions. Part IV. HNC calculations using Friedman's cosphere overlap model

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Vapor pressure data for solutions of various alkali metal and tetraalkylammonium salts in methanol at 25° and NaI solutions in ethanol, 2-propanol, and acetonitrile at 25° in the concentration range 0.04<m [mol-(kg of solvent)−1]<0.75 are used to show the applicability of the HNC integral equation method to nonaqueous electrolyte solutions. Friedman's model of overlapping cospheres is used to express the non-electrostatic part of the ion-interaction potential. Data analysis is based on the Rasaiah-Friedman algorithm for the calculation of g++ and g+− functions. After conversion from Lewis-Randall to the McMillan-Mayer system the measured osmotic coefficients of all electrolyte solutions can be reproduced with the help of the calculated correlation functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Barthel, R. Neueder, and G. Lauermann,J. Solution Chem. 14, 621 (1985).

    Google Scholar 

  2. J. Barthel, G. Lauermann, R. Neueder,J. Solution Chem. 15, 851 (1986).

    Google Scholar 

  3. J. Barthel and G. L. Lauermann,J. Solution Chem. 15, 869 (1986).

    Google Scholar 

  4. P. S. Ramanathan and H. L. Friedman,J. Phys. Chem. 54, 1086 (1971).

    Google Scholar 

  5. J. C. Rasaiah,J. Chem. Phys. 52, 704 (1970).

    Google Scholar 

  6. H. L. Friedman,A Course in Statistical Mechanics (Prentice Hall, Englewood Cliffs, New Jersey 1985). R. O. Watts and I. J. McGee,Liquid State Chemical Physics (Wiley, New York 1976).

    Google Scholar 

  7. G. Stell,Cluster Expansions for Classical Systems in Equilibriu in: “The Equilibrium Theory of Classical Fluids”, H. L. Frisch and J. L. Lebowitz, eds., (Benjamin, New York 1964).

    Google Scholar 

  8. A. P. Alnatt,Mol. Phys. 8, 533 (1964).

    Google Scholar 

  9. H. L. Friedman,J. Solution Chem. 1, 387 (1972).

    Google Scholar 

  10. J. C. Rasaiah and H. L. Friedman,J. Chem. Phys. 48, 2742 (1968).

    Google Scholar 

  11. CO6EAF-NAG FORTRAN Library Routine Document. NAGFLIB: 1813/0.Mk8: 13th January 1981.

  12. F. H. Stillinger and R. Lovett,J. Chem. Phys. 48, 3858 (1968).

    Google Scholar 

  13. J. Barthel, H. J. Gores, G. Schmeer and R. Wachter,Topics in Current Chemistry (Springer, Heidelberg 1983),111, 33 (1983).

    Google Scholar 

  14. R. D. Harrison,Datenbuch Chemie Physik Viehweg Braunschweig 1982.

    Google Scholar 

  15. S. D. Hamann and F. Smith,Austr. J. Chem. 24, 2431 (1971).

    Google Scholar 

  16. A. J. Eastal and L. A. Woolf,J. Chem. Thermodyn. 14, 755 (1982).

    Google Scholar 

  17. R. L. Kay, C. Zawoyski, and D. F. Evans,J. Phys. Chem. 69, 4208 (1965).

    Google Scholar 

  18. J. Barthel and W. Kunz, to be published.

  19. P. J. Rossky, J. B. Dudowicz, B. L. Tembe, and H. L. Friedman,J. Chem. Phys. 73, 3372 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lauermann, G., Kunz, W. & Barthel, J. Vapor pressure measurements on nonaqueous solutions. Part IV. HNC calculations using Friedman's cosphere overlap model. J Solution Chem 16, 871–884 (1987). https://doi.org/10.1007/BF00650992

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650992

Key words

Navigation