Advertisement

Astrophysics and Space Science

, Volume 2, Issue 3, pp 384–390 | Cite as

The influence of a variable initial composition on stellar silicon burning

  • James W. Truran
Article

Abstract

Silicon burning at a temperatureT=3×109K has been studied for three initial abundance configurations: (1) X(Si28)=1; (2) X(Si28)=X(Mg24)=0.5; and (3) X(Si28)=X(S32)=0.5. It may be observed that, in the absence of beta-decay, the results obtained for cases (2) and (3), in which admixtures of substantial mass fractions of Mg24 and S32 into a silicon region are considered, will converge toward those of the pure silicon relaxation problem. This convergence takes place on a rapid time scale for the Mg24 admixture while, in the case of a S32 admixture, the abundances of the heavy elements (A>28) are enhanced for a substantial fraction of the lifetime of the silicon burning process.

Keywords

Silicon Burning Mass Fraction Burning Process Heavy Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnett, W. D.: 1967,Can. J. Phys. 45, 1621.Google Scholar
  2. Arnett, W. D. andCameron, A. G. W.: 1967,Can. J. Phys. 45, 2953.Google Scholar
  3. Arnett, W. D. andTruran, J. W.: 1968,Carbon Burning Nucleosynthesis at Constant Temperature (preprint).Google Scholar
  4. Bodansky, D., Clayton, D. D., andFowler, W. A.: 1968a,Astrophys. J. Suppl. Ser. No. 148.Google Scholar
  5. Bodansky, D., Clayton, D. D., andFowler, W. A.: 1968b,Phys. Rev. Letters 20, 161.Google Scholar
  6. Cameron, A. G. W.: 1959,Astrophys. J. 130, 429.Google Scholar
  7. Colgate, S. A. andWhite, R. H.: 1966,Astrophys. J. 143, 626.Google Scholar
  8. Fowler, W. A., Caughlan, G. R., andZimmerman, B. A.: 1967,Ann. Rev. Astron. Astrophys. 5, 525.Google Scholar
  9. Hayashi, C., Nishida, M., Okyama, N., andTsuda, H.: 1959,Progr. Theoret. Phys. 22, 101.Google Scholar
  10. Reeves, H.: 1965,Stellar Structure (ed. by L. H. Aller and D. B. McLaughlin). University of Chicago Press, Chicago, Ch. 2.Google Scholar
  11. Reeves, H. andSalpeter, E. E.: 1959,Phys. Rev. 116, 1505.Google Scholar
  12. Truran, J. W.: 1968,Astrophys. Space Sci. 2, 391.Google Scholar
  13. Truran, J. W., Arnett, W. D., andCameron, A. G. W.: 1967,Can. J. Phys. 45, 2315.Google Scholar
  14. Truran, J. W., Cameron, A. G. W., andGilbert, A.: 1966b,Can. J. Phys. 44, 563.Google Scholar
  15. Truran, J. W., Hansen, C. J., Cameron, A. G. W., andGilbert, A.: 1966a,Can. J. Phys. 44, 151.Google Scholar
  16. Tsuda, H.: 1963,Progr. Theoret. Phys. 29, 29.Google Scholar

Copyright information

© D. Reidel Publishing Company 1968

Authors and Affiliations

  • James W. Truran
    • 1
  1. 1.Belfer Graduate School of ScienceYeshiva UniversityNew YorkUSA

Personalised recommendations