, Volume 102, Issue 10, pp 734–742 | Cite as

The salivary gland chromosomes ofDrosophila virilis: a cytological map, pattern of transcription and aspects of chromosome evolution

  • Horst Kress


By combining information from microscopical observation and photography a graphical map ofDrosophila virilis salivary gland chromosomes was constructed. About 1,560 individual bands are shown and patterns of transcription at about 360 sites are indicated. The application of the map is demonstrated by using genetic, morphological and in situ hybridization data to identify thewhite-Notch regions ofD. virilis andDrosophila melanogaster as homologous chromosome segments with constant and variable features.


Salivary Gland Developmental Biology Microscopical Observation Variable Feature Homologous Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aimanova KG, Pereligina LM, Kolesnikov NN (1987a) A biochemical analysis of the salivary gland secretory glycoproteins ofDrosophila virilis. Dros Inf Serv 66:1–3Google Scholar
  2. Aimanova KG, Pereligina LM, Kolesnikov NN (1987b) A genetic analysis of the tissue-specific salivary gland secretion proteins ofD. virilis. Dros Inf Serv 66:3–5Google Scholar
  3. Alexander ML (1976) The genetics ofDrosophila virilis. In: Ashburner M, Novitzki E (eds) The genetics and biology ofDrosophila, vol 1c. Academic Press, New York, pp 1365–1427Google Scholar
  4. Ashburner M (1989)Drosophila. A laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, p 51Google Scholar
  5. Blackman RK, Meselson M (1986) Interspecific nucleotide sequence comparisons used to identify regulatory and structural features of theDrosophila hsp 82 gene. J Mol Biol 188:499–515Google Scholar
  6. Chen C, Malone T, Beckendorf SK, Davis RL (1987) At least two genes reside within a large intron of the dunce gene ofDrosophila. Nature 329:721–724Google Scholar
  7. Colot HV, Hall JC, Rosbash M (1988) Interspecific comparison of the period gene ofDrosophila reveals large blocks of nonconserved coding DNA. EMBO J 7:3929–3937Google Scholar
  8. Evgen'ev MB (1977) New method of cytological localization of genes in “virilis” group ofDrosophila. Dros Inf Serv 52:59–60Google Scholar
  9. Fujii S (1936) Salivary gland chromosomes ofDrosophila virilis. Cytologia 7:272–275Google Scholar
  10. Fujii S (1942) Further studies on the salivary gland chromosomes ofDrosophila virilis. Cytologia 12:435–455Google Scholar
  11. Gall JG, Atherton DD (1974) Satellite DNA sequences inDrosophila virilis. J Mol Biol 85:633–664Google Scholar
  12. Gubenko IS, Evgen'ev MB (1984) Cytological and linkage maps ofDrosophila virilis chromosomes. Genetica 65:127–139Google Scholar
  13. Hooper JE, Perez-Alonso M, Bermingham JR, Prout MR, Rocklein BA, Wagenbach M, Edström J-E, de Frutos R, Scott MP (1992) Comparative studies ofDrosophila Antennapedia genes. Genetics 132:453–469Google Scholar
  14. Hsu TC (1952) Chromosomal variation and evolution in thevirilis group ofDrosophila. Univ Texas Publ 504:35–56Google Scholar
  15. Hughes RD (1939) An analysis of the chromosomes of the two subspeciesDrosophila virilis virilis andDrosophila virilis americana. Genetics 24:811–834Google Scholar
  16. Jones CW, Dalton MW, Townley LH (1991) Interspecific comparison of the structure and regulation of theDrosophila ecdysone-inducible gene E74. Genetics 127:535–543Google Scholar
  17. Kalisch WE, Schwitalla G, Whitmore T (1986) Electron microscopic band-interband pattern of the X chromosome inDrosophila hydei. Chromosoma 93:387–392Google Scholar
  18. Kassis JA, Poole SJ, Wright DK, O'Farrell PH (1986) Sequence conservation in the protein coding and intron regions of the engrailed transcription unit. EMBO J 5:3583–3589Google Scholar
  19. Kress H (1972) Das Puffmuster der Riesenchromosomen in den larvalen Speicheldrüsen vonDrosophila virilis: seine Veränderungen in der Normalentwicklung und nach Injektion von Ecdyson. Sitz Ber Bayer Akad Wiss Math Naturw Kl 129–149Google Scholar
  20. Kress H (1979) Ecdysone-induced changes in glycoprotein synthesis and puff activities inDrosophila virilis salivary glands. Chromosoma 72:53–66Google Scholar
  21. Kress H (1982) Biochemical and ontogenetic aspects of glycoprotein synthesis inDrosophila virilis salivary glands. Dev Biol 93:231–239Google Scholar
  22. Kress H (1986) Stoffwechselaktivitäten und Transkriptionsmuster in den larvalen Speicheldrüsen vonDrosophila virilis. Naturwissenschaften 73:180–187Google Scholar
  23. Kress H, Lucka L, Swida U, Thüroff E, Klemm U (1990) Genes from two intermoult puffs inDrosophila virilis polytene chromosomes are differentially transcribed during larval development. Development 108:261–267Google Scholar
  24. Laird CD (1974) DNA ofDrosophila chromosomes. Annu Rev Gen 7:177–203Google Scholar
  25. Lindsley DL, Zimm GG (1992) The genome ofDrosophila melanogaster. Academic Press, New YorkGoogle Scholar
  26. Lozovskaya ER, Petrov DA, Hartl DL (1993) A combined molecular and cytogenetic approach to genome evolution inDrosophila using large-fragment DNA cloning. Chromosoma 102:253–266Google Scholar
  27. Merriam J, Ashburner M, Hartl DL, Kafatos FC (1991) Toward cloning and mapping the genome ofDrosophila. Science 254:221–225Google Scholar
  28. Mulder MP, Duijn P van, Gloor HJ (1968) The replicative organization of DNA in polytene chromosomes ofDrosophila hydei. Genetica 39:385–428Google Scholar
  29. Neufeld TP, Carthew RW, Rubin GM (1991) Evolution of gene position: chromosomal arrangement and sequence comparison of theDrosophila virilis sina and Rh4 genes. Proc Natl Acad Sci USA 88:10203–10207Google Scholar
  30. O'Neil MT, Belote JM (1992) Interspecific comparison of the transformer gene ofDrosophila reveals an unusually high degree of evolutionary divergence. Genetics 131:113–128Google Scholar
  31. Patterson JT, Stone WS, Griffen AB (1940) Evolution of the virilis group inDrosophila. Univ Texas Publ 4032:218–250Google Scholar
  32. Rudkin GT (1969) Non-replicating DNA inDrosophila. Genetics 61: [Suppl] 227–238Google Scholar
  33. Rykowski MC, Parmelee SJ, Agard DA, Sedat JW (1988) Precise determination of the molecular limits of a polytene chromosome band: regulation sequences for the Notch gene are in the interband. Cell 54:461–472Google Scholar
  34. Sorsa V (1988) Chromosome maps ofDrosophila, vol II. CRC Press, Boca Raton, FloridaGoogle Scholar
  35. Sturtevant AH, Novitzki E (1941) The homologies of the chromosome elements in the genusDrosophila. Genetics 26:517–541Google Scholar
  36. Swida U, Lucka L, Kress H (1990) Glue protein genes inDrosophila virilis: their organization, developmental control of transcription and specific mRNA degradation. Development 108:269–280Google Scholar
  37. Thüroff E, Stöven S, Kress H (1992)Drosophila salivary glands exhibit a regional reprogramming of gene expression during the third larval instar. Mech Dev 37:81–93Google Scholar
  38. Treier T, Pfeifle C, Tautz D (1989) Comparison of the gap segmentation gene hunchback betweenDrosophila melanogaster andDrosophila virilis reveals novel modes of evolutionary change. EMBO J 8:1517–1525Google Scholar
  39. Wainwright SM, Ish-Horowicz D (1992) Point mutations in theDrosophila hairy gene demonstrate in vivo requirements for basic, helix-loop-helix, and WRPW domains. Mol Cell Biol 12:2475–2483Google Scholar
  40. Wallrath LL, Friedman TB (1991) Species differences in the temporal pattern ofDrosophila urate oxidase gene expression are attributed to trans-acting regulatory changes. Proc Natl Acad Sci USA 88:5489–5493Google Scholar
  41. Wharton KA, Johansen KM, Xu T, Artavanis-Tsakonas S (1985) Nucleotide sequence from the neurogenic locus Notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43:567–581Google Scholar
  42. Whiting JH, Pliley MD, Farmer JL, Jeffery DE (1989) In situ hybridization analysis of chromosomal homologies inDrosophila melanogaster andDrosophila virilis. Genetics 122:99–109Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Horst Kress
    • 1
  1. 1.Genetisches Institut der Freien Universität BerlinBerlinGermany

Personalised recommendations