Skip to main content
Log in

Ionic interactions in solutions. III. Derivation of the ″associated″ electrolyte formulation from the Onsager treatment of conductance

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The system of equations of the Onsager treatment of conductance is rederived in a systematic way by the use of several sets of hierarchy equations generalizing to other quantities the classical Born-Bogoliubov-Green-Kirkwood-Yvon (BBGKY) hierarchy of internal force. The “monitoring” term of the Onsager continuity equation obtained is compared to former theoretical studies. It is inferred in particular that the perturbation on the anion-cation pair distribution for a symmetrical binary electrolyte is proportional not only to the external fieldX but also to the conductance coefficientf A=1+δX/X+Λ el/Λ 0. This result, called the “echo” effect, leads to a new formulation of molar conductance which shows a great similarity to the empirical conductance function obtained by grafting the chemical model of Bjerrum onto the conductance equations derived on the basis of the Debye approximations as proposed formerly by the author from experimental observations. The result allows a simple generalization of the conductance equation to any direct short-range anion-cation energy-potential model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Debye and H. Falkenhagen,Phys. Z. 29, 401 (1928).

    Google Scholar 

  2. W. Ebeling,Wiss. Z. Univ. Rostock Math. Naturwiss. Reihe 14, 271 (1965);Ann. Phys., Leipzig 16, 1947 (1965).

    Google Scholar 

  3. E. Pitts,Proc. Roy. Soc. London 217, 43 (1953).

    Google Scholar 

  4. E. Pitts, B. E. Tabor, and J. Daly,Trans. Faraday Soc. 65, 849 (1969).

    Google Scholar 

  5. R. M. Fuoss and L. OnsagerJ. Phys. Chem. 61, 668 (1957).

    Google Scholar 

  6. R. M. Fuoss, L. Onsager, and J. F. Skinner,J. Phys. Chem. 69, 2581 (1965).

    Google Scholar 

  7. R. M. Fuoss and K. L. Hsia,Proc. Nat. Acad. Sci. U.S.A. 57, 1550, 1818 (1967).

    Google Scholar 

  8. R. M. Fuoss,J. Phys. Chem. 79, 525 (1975).

    Google Scholar 

  9. T. J. Murphy and E. G. D. Cohen,J. Chem. Phys. 53, 2173 (1970).

    Google Scholar 

  10. J. Quint and A. Viallard,J. Chim. Phys. 69, 1100 (1972).

    Google Scholar 

  11. R. M. Fuoss,J. Phys. Chem. 63, 633 (1959).

    Google Scholar 

  12. R. M. Fuoss and F. Accascina, inElectrolytic Conductance (Interscience Publishers, Inc., New York, 1959).

    Google Scholar 

  13. H. Falkenhagen, W. Ebeling, and W. D. Kraeft, “Transport Properties of Dilute Electrolytes,” inIonic Interactions, S. Petrucci, ed. (Academic Press, New York, 1971).

    Google Scholar 

  14. W. Ebeling, Private communication to be published inJ. NonEquil. Thermodyn.

  15. P. C. Carman,J. S. Afr. Chem. Inst. 28, 80 (1975);J. Solution Chem. 6, 609 (1977);7, 845 (1978).

    Google Scholar 

  16. J.-C. Justice,J. Chim. Phys. 65, 353 (1968).

    Google Scholar 

  17. M.-C. Justice and J.-C. Justice,J. Solution Chem. 5, 543 (1976).

    Google Scholar 

  18. J.-C. Justice and W. Ebeling, submitted toJ. Solution Chem.

  19. M.-C. Justice and J.-C. Justice,J. Solution Chem. 6, 819 (1977).

    Google Scholar 

  20. J. Perie, M. Perie, and J.-C. Justice, to be submitted toJ. Solution Chem.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Justice, JC. Ionic interactions in solutions. III. Derivation of the ″associated″ electrolyte formulation from the Onsager treatment of conductance. J Solution Chem 7, 859–875 (1978). https://doi.org/10.1007/BF00650813

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650813

Key words

Navigation