Advertisement

Journal of Solution Chemistry

, Volume 20, Issue 4, pp 445–453 | Cite as

Enthalpies of interaction of N-acetyl amides of sarcosine and N-methyl-L-alanine dissolved in N,N-dimethylformamide at 25°C

  • André H. Sijpkes
  • Gus Somsen
Article

Abstract

Enthalpies of dilution of N-acetyl amides of sarcosine and N-methyl-L-alanine dissolved in N,N-dimethylformamide have been measured calorimetrically at 25°C. The enthalpic pairwise interaction coefficients calculated there from are negative, indicating a energetically favorable interaction. The results were used to make a comparison with other peptides with regard to the methylation of amide groups. Substituting a primary amide hydrogen by a methyl group gives a smaller positive change of the pairwise interaction coefficient than substituting a secondary amide hydrogen.

Key words

Enthalpy of interaction peptide nonaqueous solution methylation of amide group 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. H. Sijpkes and S. Somsen,J. Chem. Soc., Faraday Trans. I 85, 2563 (1989).Google Scholar
  2. 2.
    H. E. Kent, T. H. Lilley, P. J. Milburn, M. Bloemendal, and G. Somsen,J. Solution Chem. 14, 101 (1985).Google Scholar
  3. 3.
    M. Bloemendal and G. Somsen,J. Solution Chem. 13, 281 (1983).Google Scholar
  4. 4.
    D. C. Roberts and R. S. Bohacek,Int. J. Pept. Protein Res. 21, 491 (1983).Google Scholar
  5. 5.
    R. B. Macgregor and G. Weber,Nature 319, 70 (1986).Google Scholar
  6. 6.
    G. M. Blackburn, T. H. Lilley, and P. J. Milburn,Thermochim. Acta 83, 289 (1985).Google Scholar
  7. 7.
    P. J. Cheek and T. H. Lilley,J. Chem. Soc., Faraday Trans. I 84, 1927 (1988).Google Scholar
  8. 8.
    A. H. Sijpkes, A. A. C. M. Oudhuis, G. Somsen, and T. H. Lilley,J. Chem. Thermodyn.21, 343 (1989).Google Scholar
  9. 9.
    J. J. Savage and R. H. Wood,J. Solution Chem. 5, 733 (1976).Google Scholar
  10. 10.
    G. M. Blackburn, T. H. Lilley, and P. J. Milburn,J. Solution Chem 13, 789 (1984).Google Scholar
  11. 11.
    G. M. Blackburn, T. H. Lilley, and P. J. Milburn,J. Solution Chem. 15, 99 (1985).Google Scholar
  12. 12.
    G. M. Blackburn, T. H. Lilley, and P. J. Milburn,J. Chem. Soc., Faraday Trans. I 82, 2965 (1986).Google Scholar
  13. 13.
    F. R. Maxfield, S. J. Leach, E. R. Stimson, S. P. Powers, and H. A. Scheraga.Biopolymers 18, 2507 (1979).Google Scholar
  14. 14.
    W. G. McMillan, Jr. and J. E. Mayer,J. Chem. Phys. 13, 276 (1945).Google Scholar
  15. 15.
    H. L. Friedman,J. Solution Chem. 1, 387; 413 (1972).Google Scholar
  16. 16.
    M. Avignon and P. V. Huong,Biopolymers 9, 427 (1970).Google Scholar
  17. 17.
    J. Néel,Pure Appl. Chem. 31, 201 (1972).Google Scholar
  18. 18.
    M. Avignon, C. Garrigou-Lagrange, and P. Bothorel,Biopolymers 12, 1651 (1973).Google Scholar
  19. 19.
    V. Madison and K. D. Kopple,J. Am. Chem. Soc. 102, 4855 (1980).Google Scholar
  20. 20.
    C. I. Jose, A. A. Belhekar, and M. S. Agashe,Biopolymers 26, 1315 (1987).Google Scholar
  21. 21.
    I. Z. Siemion and B. Picur,Bull. Pol. Acad. Sci. Chem. 35, 179 (1987).Google Scholar
  22. 22.
    I. Z. Siemion and B. Picur,Biophys. Chem. 31, 71 (1988).Google Scholar
  23. 23.
    T. Yamazaki and A. Abe,Biopolymers 27, 969 (1988).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • André H. Sijpkes
    • 1
  • Gus Somsen
    • 1
  1. 1.Department of ChemistryVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations