Skip to main content
Log in

Heat capacities of concentrated multicomponent aqueous electrolyte solutions at various temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The specific heat capacities of the aqueous multicomponent system NaCl +KCl+MgCl2+CaCl2 with ionic strength between 8.3 and 9.6 (resembling Dead Sea waters) were measured between 15°C and 45°C. The obtained data were fitted to an empirical equation as a function of concentration and temperature. The thermodynamic functions of the studied multicomponent system were found to be strongly influenced by changes in MgCl2 concentrations. The application of Young's rule to such concentrated systems was checked at 25°C. The calculated (by Young's rule) specific heat capacitiesC p and apparent molar heat capacities Cp,ϕ of these multicomponent electrolyte solutions were in reasonable agreement with the measured values (−0.008 J-g−1-K−1 and −2.6 J-mol−1-K−1, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. Krumgalz and F. J. Millero,Mar. Chem. 11, 209 (1982).

    Google Scholar 

  2. F. J. Millero, G. Perron and J. E. Desnoyers,J. Geophys. Res. 78, 4499 (1973).

    Google Scholar 

  3. T. F. Young and M. B. Smith,J. Phys. Chem. 58, 716 (1954).

    Google Scholar 

  4. B. S. Krumgalz and F. Gat,Natl. Inst. Oceanogr., Haifa, Israel, Rep. H4/84 (1984).

  5. D. Neev and K. O. Emery,Geol. Survey Israeli Bull. 41, (1967).

  6. B. S. Krumgalz and F. J. Millero,Mar. Chem. 11, 477 (1982).

    Google Scholar 

  7. B. S. Krumgalz and R. Holzer,Limnol. Oceanogr. 25, 367 (1980).

    Google Scholar 

  8. P. Picker, E. Tremblay and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  9. G. Perron, J. E. Desnoyers and F. J. Millero,Can. J. Chem. 52, 3738 (1974).

    Google Scholar 

  10. P. Picker, P.-A. Leduc, P. R. Philip and J. E. Desnoyers,J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  11. G. Perron, J.-L. Fortier and J. E. Desnoyers,J. Chem. Thermodyn. 7, 1177 (1975).

    Google Scholar 

  12. J.-L. Fortier and G. C. Benson,J. Chem. Thermodyn. 8, 411 (1976).

    Google Scholar 

  13. J. E. Desnoyers, C. de Visser, G. Perron and P. Picker,J. Solution Chem. 5, 605 (1976).

    Google Scholar 

  14. I. V. Olofsson,J. Chem. Thermodyn. 11, 1005 (1979).

    Google Scholar 

  15. G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

  16. H. F. Stimson,Am. J. Phys. 23, 614 (1955).

    Google Scholar 

  17. G. Perron, A. Roux and J. E. Desnoyers,Can. J. Chem. 59, 3049 (1981).

    Google Scholar 

  18. J. E. Tanner and F. W. Lamb,J. Solution Chem. 7, 303 (1978).

    Google Scholar 

  19. Y. Marcus, inIonic Liquids, D. Inman and D. G. Lovering, eds., (Plenum, New York, 1981), p. 97.

    Google Scholar 

  20. K. S. Pitzer, inActivity Coefficients In Electrolyte Solution K. S. Pitzer, ed., (CRC Press, Boca Raton, 1991), p. 75.

    Google Scholar 

  21. J.-L. Fortier, P. A. Leduc and J. E. Desnoyers,J. Solution Chem. 3, 323 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krumgalz, B.S., Malester, I.A., Ostrich, I.J. et al. Heat capacities of concentrated multicomponent aqueous electrolyte solutions at various temperatures. J Solution Chem 21, 635–649 (1992). https://doi.org/10.1007/BF00650758

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650758

Key words

Navigation