Skip to main content
Log in

Dielectric constants of fluid mixtures over a wide range of temperature and density

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A new expression is presented for estimating the dielectric constant of a fluid mixture as a function of temperature, density and composition. The estimated dielectric constants (and their derivatives) are required for phase-equilibrium calculations, based on an equation of state, for systems containing electrolytes and nonelectrolytes. The new expression holds for the entire range of fluid densities, from zero to liquid-like densities. Mixing of components is performed on a volume-fraction basis at constant temperature and constant reduced density. For polar components where data are not available at the temperature and/or reduced density of interest, the well-characterized behavior of water is used to extrapolate the available pure-component data. The importance of using the correct density of the mixture is shown. Using one adjustable parameter for each nonideal binary subsystem, predicted results can be significantly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Raatschen, A. H. Harvey, and J. M. Prausnitz,Fluid Phase Equilibria, in press.

  2. J. G. Kirkwood,J. Chem. Phys. 7, 911 (1939).

    Google Scholar 

  3. M. Uematsu and E. U. Franck,J. Phys. Chem. Ref. Data 9, 1291 (1980).

    Google Scholar 

  4. H. Fröhlich,Theory of Dielectrics, 2nd edn. (Oxford University Press, 1958).

  5. C. J. F. Böttcher,Theory of Electric Polarization, 2nd edn., Vol. 1 (Elsevier, Amsterdam, 1973).

    Google Scholar 

  6. G. Oster,J. Am. Chem. Soc. 68, 2036 (1946).

    Google Scholar 

  7. Several mixing rules are given in C. J. F. Böttcher,Theory of Electric Polarization, 2nd edn., Vol. 2, pp. 476 ff (Elsevier, 1978).

  8. J. Wisniak and A. Tamir,Mixing and Excess Thermodynamic Properties: A Literature Source Book, (Elsevier, Amsterdam, 1978);Supplement 1, (1982);Supplement 2, (1986).

    Google Scholar 

  9. Landolt-Börnstein,Zahlenwerte und Functionen, 6th edn., Vol. 1, part 1, p. 401 (Berlin: Springer-Verlag, 1951);ibid. Zahlenwerte und Functionen, 6th edn., Vol. 1, part 3, p. 510; C. G. Gray and K. E. Gubbins,Theory of Molecular Fluids, Vol. 1, Appendix D (Oxford University Press, 1984).

    Google Scholar 

  10. E. U. Franck and R. Deul,Disc. Faraday Soc. 66, 191 (1978).

    Google Scholar 

  11. M. Buback and W. D. Harder,Ber. Bunsenges. Physik. Chem. 81, 603 (1977).

    Google Scholar 

  12. A. J. Easteal and L. A. Woolf,J. Chem. Thermodyn. 17, 49 (1985).

    Google Scholar 

  13. P. S. Albright and H. J. Gosting,J. Am. Chem. Soc. 68, 1061 (1946).

    Google Scholar 

  14. G. Akerlöf,J. Am. Chem. Soc. 54, 4125 (1932).

    Google Scholar 

  15. S. Westmeier,Chem. Techn. 28, 350 (1976).

    Google Scholar 

  16. S. Westmeier,Chem. Techn. 28, 480 (1976).

    Google Scholar 

  17. J. Winkelmann,Z. Phys. Chem. 255, 1109 (1974).

    Google Scholar 

  18. K. Nakanishi, N. Kata, and M. Maruyama,J. Phys. Chem. 71, 814 (1967).

    Google Scholar 

  19. D. Decroocq,Bull. Soc. Chim. France 1964, 127 (1964).

    Google Scholar 

  20. G. P. Cunningham, G. A. Vidulich, and R. L. Kay,J. Chem. Eng. Data 12, 336 (1967).

    Google Scholar 

  21. Y. P. Handa and G. C. Benson,J. Solution Chem. 10, 291 (1981).

    Google Scholar 

  22. S. S. Kurtz, A. E. Wikingsson, D. L. Camin, and A. R. Thompson,J. Chem. Eng. Data 10, 330 (1965).

    Google Scholar 

  23. M. Morénas and G. Douhéret,Thermochim. Acta 25, 217 (1978).

    Google Scholar 

  24. F. E. Critchfield, J. A. Gibson, and J. L. Hall,J. Am. Chem. Soc. 75, 6044 (1953).

    Google Scholar 

  25. O. Kiyohara and G. C. Benson,Can. J. Chem. 55, 1354 (1977).

    Google Scholar 

  26. F. E. Critchfield, J. A. Gibson, and J. L. Hall,J. Am. Chem. Soc. 75, 1991 (1953).

    Google Scholar 

  27. K. W. Morcom and R. W. Smith,Trans. Faraday Soc. 66, 1073 (1970).

    Google Scholar 

  28. A. P. Krasnoperova and A. A. Asheko,Zhur. strukt. khim. 18, 960 (1977).

    Google Scholar 

  29. G. C. Benson and H. D. Pflug,J. Chem. Eng. Data 15, 382 (1970).

    Google Scholar 

  30. M. Joerges and A. Nikuradse,Z. Naturforschg. 5a, 259 (1950).

    Google Scholar 

  31. A. N. Campbell and E. M. Kartzmark,J. Chem. Thermodyn. 5, 163 (1973).

    Google Scholar 

  32. P. Huyskens, G. Gillerot, and T. Zeegers-Huyskens,Bull. Soc. Chim. Belg. 72, 666 (1963).

    Google Scholar 

  33. C. V. Suryanarayana and K. M. Somasundaram,Acta Chim. Hung. 24, 31 (1960).

    Google Scholar 

  34. A. D'Aprano, D. I. Donato, and E. Caponetti,J. Solution Chem. 8, 135 (1979).

    Google Scholar 

  35. Y. Y. Akhadov,Dielectric Properties of Binary Solutions (Pergamon Press, 1981).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harvey, A.H., Prausnitz, J.M. Dielectric constants of fluid mixtures over a wide range of temperature and density. J Solution Chem 16, 857–869 (1987). https://doi.org/10.1007/BF00650755

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650755

Key words

Navigation