Skip to main content
Log in

Diffusion in aqueous copper sulfate and copper sulfate-sulfuric acid solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Diffusion coefficients of copper sulfate-water and copper sulfate-sulfuric acid-water solutions have been determined at 25°C using conductimetric and diaphragm-cell techniques. The ternary diffusion measurements indicate that diffusion of sulfuric acid can produce large counterflows of copper sulfate and vice versa. If diffusion of copper sulfate in aqueous sulfuric acid solutions is treated as a binary process, the measured apparent diffusivities of copper sulfate can be 1 to 8% lower than the salt's true diffusivity. Equations are developed to predict transport coefficients from the concentrations and mobilities of the diffusing species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Pletcher,Industrial Electrochemistry (Chapman and Hall, New York, 1982), p. 128, 186.

    Google Scholar 

  2. A. F. W. Cole and A. R. Gordon,J. Phys. Chem. 40, 736 (1936).

    Google Scholar 

  3. Y. Awakura, A. Ebata, M. Morita and Y. Kondo,Denki Kaguku 43, 569 (1975).

    Google Scholar 

  4. L. Onsager,Ann. N. Y. Acad. Sci. 46, 241 (1945).

    Google Scholar 

  5. S. R. DeGroot and P. Mazur,Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1962).

    Google Scholar 

  6. H. S. Harned and R. L. Nutall,J. Am. Chem. Soc. 71, 1460 (1949).

    Google Scholar 

  7. D. G. Leaist and P. A. Lyons,J. Solution Chem. 13, 77 (1984).

    Google Scholar 

  8. D. G. Leaist,Can. J. Chem. 62, 1692 (1984).

    Google Scholar 

  9. D. G. Leaist,J. Solution Chem. 14, 709 (1985).

    Google Scholar 

  10. D. G. Leaist and R. A. Noulty,Can. J. Chem. 63, 2319 (1985).

    Google Scholar 

  11. D. G. Leaist,Can. J. Chem. 63, 2933 (1985).

    Google Scholar 

  12. R. H. Stokes,J. Am. Chem. Soc. 72, 763, 2243 (1950).

    Google Scholar 

  13. R. A. Robinson and R. H. Stokes,Electrolyte Solutions, 2nd edn., (Academic Press, New York, 1959), Chap. 10;

    Google Scholar 

  14. Appendix 6.1.

    Google Scholar 

  15. G. D. Rai and H. T. Cullinan, Jr.J. Chem. Eng. Data 18, 213 (1973).

    Google Scholar 

  16. G. Kosanovich and H. T. Cullinan, Jr.,Can. J. Chem. Eng. 49, 753 (1971).

    Google Scholar 

  17. A. Vogel, Vogel's Textbook of Quantitative Inorganic Analysis, 4th edn., Revised by J. Basset, R. C. Denney, G. H. Jeffery and J. Mendham, (Longman, New York, 1978), p. 379.

    Google Scholar 

  18. D. A. Skoog and D. M. West, Fundamentals of Analytical Chemistry, 2nd edn., (Holt, Rinehart and Winston, New York, 1969), p. 459.

    Google Scholar 

  19. V. H. Acevdo, J. Albarracin de Moran, and L. A. Sales,Can. J. Chem. 61, 267 (1983).

    Google Scholar 

  20. D. G. Miller, J. A. Rard, L. B. Eppstein, and R. A. Robinson,J. Solution Chem. 9, 467 (1980).

    Google Scholar 

  21. W. G. Eversole, H. M. Kindsvater, and J. D. Paterson,J. Phys. Chem. 46, 370 (1942).

    Google Scholar 

  22. R. N. O'Brien, D. Quon, and C. R. Darsi,J. Electrochem. Soc. 117, 888 (1970).

    Google Scholar 

  23. M. Tanigaki, K. Kondo, M. Haroda, and W. Eguchi,J. Phys. Chem. 87, 586 (1983).

    Google Scholar 

  24. A. Emanuel and D. R. Olander,J. Chem. Eng. Data 8, 31 (1963).

    Google Scholar 

  25. L. A. Woolf and A. W. Hoveling,J. Phys. Chem. 74, 2406 (1970).

    Google Scholar 

  26. C. Y. Luk, L. Nannis, and M. Litt,Ind. Eng. Chem. Fundam. 14, 92 (1975).

    Google Scholar 

  27. A. R. Gordon,J. Chem. Phys. 5, 522 (1937).

    Google Scholar 

  28. R. H. Stokes,J. Am. Chem. Soc. 75, 4563 (1953).

    Google Scholar 

  29. P. Claessens, Cl. Feneau, and R. Breckpot,Bull. Soc. Chim. Belges 77, 213 (1968).

    Google Scholar 

  30. K. S. Pitzer and G. Mayorga,J. Solution Chem. 3, 539 (1974).

    Google Scholar 

  31. R. A. Matheson,J. Phys. Chem. 69, 1537 (1965).

    Google Scholar 

  32. R. Hemmes and S. Petrucci,J. Phys. Chem. 72, 3986 (1968).

    Google Scholar 

  33. H. S. Harned and R. M. Hudson,J. Am. Chem. Soc. 73, 3781, 5880 (1951).

    Google Scholar 

  34. D. G. Leaist,J. Chem. Soc., Faraday Trans. 1 78, 3069 (1982).

    Google Scholar 

  35. E. A. Guggenheim and J. C. Turgeon,Trans. Faraday Soc. 55, 747 (1955).

    Google Scholar 

  36. A. K. Covington, J. V. Dobson and W. F. K. Wynne-Jones,Trans. Faraday Soc. 61, 2057 (1965).

    Google Scholar 

  37. K. S. Pitzer, R. N. Roy, and L. F. Silvester,J. Am. Chem. Soc. 99, 4930 (1977).

    Google Scholar 

  38. M. Kerker,J. Am. Chem. Soc. 79, 3664 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noulty, R.A., Leaist, D.G. Diffusion in aqueous copper sulfate and copper sulfate-sulfuric acid solutions. J Solution Chem 16, 813–825 (1987). https://doi.org/10.1007/BF00650751

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650751

Key words

Navigation