Journal of Solution Chemistry

, Volume 8, Issue 4, pp 293–307 | Cite as

The structure of binary liquids. The Kirkwood-Buff theory of liquid mixtures, illustrated on the basis of the systems water/methanol, water/ethanol, and cyclohexane/2,3-dimethylbutane, as a link between thermodynamic data and x-ray and neutron scattering results

  • M. C. A. Donkersloot


With the help of the Kirkwood-Buff theory of liquid mixtures it is demonstrated that there is a close relationship between, on the one hand, x-ray and neutron scattering intensities from liquid mixtures and, on the other hand, certain thermodynamic properties of the systems considered. This relationship can be utilized without having to specify the intermolecular interaction potential and without having to perform computer simulation calculations. In the present paper the Kirkwood-Buff theory is applied to liquid water and to the binary systems H2O/MeOH, H2O/EtOH, and cyclohexane/2,3-dimethyl-butane. On the basis of these examples it is explained that, from the thermodynamic quantities used, the detailed shape of the various molecular radial distribution functions cannot be established. However, in principle this information could well be obtained from the x-ray and neutron scattering intensities of the liquids that are being studied, provided an acceptable procedure could be found to isolate the different radial distribution functions. In this respect the information extracted from thermodynamic data would be essential since, in the first place, it provides a valuable way of normalization of the scattered intensity, and, in the second place, for multicomponent liquids it puts forward specific conditions to be satisfied by the various radial distribution functions.

Key Words

Liquid structure x-ray scattering neutron scattering Kirkwood-Buff theory water/alcohol mixtures methanol ethanol cyclohexane 2,3-dimethylbutane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. G. Kirkwood and F. P. Buff,J. Chem. Phys. 19, 774 (1951).Google Scholar
  2. 2.
    F. P. Buff and R. Brout,J. Chem. Phys. 23, 458 (1955).Google Scholar
  3. 3.
    F. P. Buff and F. M. Schindler,J. Chem. Phys. 29, 1075 (1958).Google Scholar
  4. 4.
    F. P. Buff and R. Brout,J. Chem. Phys. 33, 1417 (1960).Google Scholar
  5. 5.
    A. Ben-Naim,Water and Aqueous Solutions. Introduction to a Molecular Theory (Plenum, New York, 1974), Chapter 4.Google Scholar
  6. 6.
    A. Ben-Naim,J. Chem. Phys. 67, 4884 (1977).Google Scholar
  7. 7.
    K. D. Luks, H. T. Davis, and J. P. Kohn,J. Chem. Thermodyn. 7, 311 (1975).Google Scholar
  8. 8.
    H. D. Bale, R. E. Shepler, and D. K. Sorgen,Phys. Chem. Liq. 1 181 (1968).Google Scholar
  9. 9.
    L. B. Shaffer, Thesis, University of Wisconsin (1964).Google Scholar
  10. 10.
    F. Franks and D. J. G. Ives,Q. Rev. Chem. Soc. 20, 1 (1966).Google Scholar
  11. 11.
    L. Blum and A. H. Narten,Adv. Chem. Phys. 34, 203 (1976).Google Scholar
  12. 12.
    M. C. A. Donkersloot,Chem. Phys. Lett. 60, 435 (1979).Google Scholar
  13. 13.
    J. Krogh-Moe,Acta Crystallogr. 9, 951 (1956).Google Scholar
  14. 14.
    G. S. Kell,J. Chem. Eng. Data 20, 97 (1975).Google Scholar
  15. 15.
    A. H. Narten and H. A. Levy,J. Chem. Phys. 55, 2263 (1971).Google Scholar
  16. 16.
    M. B. Ewing and K. N. Marsh,J. Chem. Thermodyn. 6, 35 (1974).Google Scholar
  17. 17.
    M. L. McGlashan and A. G. Williamson,J. Chem. Eng. Data 21, 196 (1976).Google Scholar
  18. 18.
    International Critical Tables, Vol. III (1928), p. 116.Google Scholar
  19. 19.
    R. S. Hansen and F. A. Miller,J. Chem. Phys. 58, 193 (1954).Google Scholar
  20. 20.
    T. Moriyoshi and H. Inubushi,J. Chem. Thermodyn. 9, 587 (1977).Google Scholar

Copyright information

© Plenum Publishing Corporation 1979

Authors and Affiliations

  • M. C. A. Donkersloot
    • 1
  1. 1.Laboratorium voor Algemene ChemieEindhoven University of TechnologyEindhovenNetherlands

Personalised recommendations