Skip to main content
Log in

Model calculations of changes of thermodynamic variables for the transfer of nonpolar solutes from water to water-d2

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A recently introduced modified hydration shell hydrogen bond model for rationalizing the thermodynamic consequences of hydrophobic hydration is adapted for use with heavy water. The required adjustment of parameters employs the assumption that breaking hydrogen bonds in water-d2 involves a greater enthalpy change and a larger entropy increase than bond breaking in ordinary water. It also makes some use of information derived from studies of gas solubilities in the two solvents, although a review of the data leads to serious questions about the reliability of results obtained in this way. The model permits calculations of hydrogen bonding contributions to the changes, ΔG ot , ΔH ot , ΔS ot , and ΔC op,t , for transfer of nonpolar solutes from water to water-d2 and implies that such data should show regular trends. Although some of the numerical results depend strongly on the values chosen for the parameters, the pattern defined by these trends is nearly independent of parameters. Predicted values of ΔC op,t are large and positive for all nonpolar solutes, while ΔS ot is expected to be negative near 0°C, becoming progressively less negative on warming and eventually positive. Both of these quantities should be proportional to the molecular surface area of the solute. Analogous predictions regarding ΔG ot and ΔH ot can also be made, but only if it is permissible to neglect possible contributions to these quantities from van der Waals interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Gill,J. Chem. Thermodyn. 20, 1361 (1988).

    Google Scholar 

  2. P. Privalov and S. J. Gill,Adv. Protein Chem. 40, 191 (1988);Pure and Appl. Chem. 61, 1097 (1989).

    Google Scholar 

  3. S. J. Gill, S. F. Dec, G. Olofsson, and I. Wadsö,J. Phys. Chem. 89, 3758 (1985).

    Google Scholar 

  4. N. Muller,J. Solution Chem. 17, 661 (1988).

    Google Scholar 

  5. N. Muller,Accounts Chem. Research 23, 23 (1990).

    Google Scholar 

  6. G. C. Kresheck, H. Schneider, and H. A. Scheraga,J. Phys. Chem. 69, 3132 (1965).

    Google Scholar 

  7. A. Ben-Naim,J. Chem. Phys. 52, 1512 (1965).

    Google Scholar 

  8. A. Ben-Naim, J. Wilf, and M. Yaacobi,J. Phys. Chem. 77, 95 (1973).

    Google Scholar 

  9. W. Y. Wen and J. A. Muccitelli,J. Solution Chem. 8, 225 (1979).

    Google Scholar 

  10. B. A. Cosgrove and J. Walkley,J. Chromatography 216, 161 (1981).

    Google Scholar 

  11. R. Crovetto, R. Fernandez-Prini, and M. L. Japas,J. Chem. Phys. 76, 1077 (1982).

    Google Scholar 

  12. A. Ben-Naim,J. Phys. Chem. 79, 1268 (1975).

    Google Scholar 

  13. Y. Marcus and A. Ben-Naim,J. Chem. Phys. 83, 4744 (1985).

    Google Scholar 

  14. E. M. Arnett and D. R. McKelvey, inSolute-Solvent Interactions J. F. Coetzee and C. D. Ritchie, eds., (Dekker, New York, 1969), Chap. 6.

    Google Scholar 

  15. G. Jansco and W. A. Van Hook,Chem. Revs. 74, 689 (1974).

    Google Scholar 

  16. E. Wilhelm, R. Battino, and R. J. Wilcock,Chem. Revs. 77, 219 (1977).

    Google Scholar 

  17. S. F. Dec and S. J. Gill,J. Solution Chem. 14, 827 (1985);

    Google Scholar 

  18. 14, 416 (1985).

    Google Scholar 

  19. B. B. Benson and D. Krause, Jr.,J. Chem. Phys. 64, 689 (1976).

    Google Scholar 

  20. D. Krause, Jr. and B. B. Benson,J. Solution Chem. 18, 823 (1989).

    Google Scholar 

  21. N. Muller,J. Phys. Chem. 94, 3856 (1990).

    Google Scholar 

  22. G. Némethy and H. A. Scheraga,J. Chem. Phys. 41, 680 (1964).

    Google Scholar 

  23. J. Kirshenbaum,Physical Properties and Analysis of Heavy Water (McGraw-Hill, New York, 1951), p. 31.

    Google Scholar 

  24. W. A. P. Luck, inPhysico-Chemical Processes in Mixed Aqueous Solvents, F. Franks, ed., (Elsevier, New York, 1967), p. 12.

    Google Scholar 

  25. G. E. Walrafen, inHydrogen-Bonded Solvent Systems, A. K. Covington and P. Jones, eds., (Taylor and Francis, London, 1968), p. 25.

    Google Scholar 

  26. J. Kirshenbaum,Physical Properties and Analysis of Heavy Water (McGraw-Hill, New York, 1951), Ref. 22 J. Kirshenbaum,Physical Properties and Analysis of Heavy Water (McGraw-Hill, New York, 1951), p. 32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muller, N. Model calculations of changes of thermodynamic variables for the transfer of nonpolar solutes from water to water-d2 . J Solution Chem 20, 669–680 (1991). https://doi.org/10.1007/BF00650715

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650715

Key words

Navigation