Skip to main content
Log in

Correlation of the prigogine-flory theory with isothermal compressibility data. I. Systems with quasi-spherical molecules

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The isothermal compressibilities KT for cyclohexane + benzene, cyclohexane + toluene and benzene + toluene systems at 25, 35, 45 and 60°C have been used to test the Prigogine-Flory theory using Van der Waals and Lennard-Jones energy potentials. Flory's energy parameter X 12 was calculated for these systems at the four temperatures. From X 12 for the equimolar mixture, the following excess functions were calculated: (∂VE/∂p)T which is related to K ET , the heat of mixing HE, and the excess volume VE. The theory and any of the two potentials give (∂VE/∂p)T which fit the experimental data, but HE and VE, calculated using the same X 12 parameter, depart appreciably from the experimental data even though they agree in sign and have the essential features of the excess functions. The departure is apparent in both magnitude (in particular for the cyclohexane + benzene, and cyclohexane + toluene systems) and in the temperature dependence. The conclusion is that the X 12 parameter does not predict the thermodynamic properties of these systems and the Lennard-Jones potential, involving a more complicated expression, does not contribute any improvement over the Van der Waals potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Aicart, G. Tardajos, and M. Diaz Peña,J. Chem. Thermodyn. 12, 1085 (1980).

    Google Scholar 

  2. E. Aicart, G. Tardajos, and M. Diaz Peña,J. Chem. Eng. Data 26, 283 (1981).

    Google Scholar 

  3. E. Aicart, G. Tardajos, and M. Diaz Peña,J. Solution Chem. 11, 557 (1982).

    Google Scholar 

  4. K. Elliot and C. J. Wormald,J. Chem. Thermodyn. 8, 881 (1976).

    Google Scholar 

  5. K. Hsu and H. L. Clever,J. Chem. Thermodyn. 7 435 (1975).

    Google Scholar 

  6. G. H. Cheesman and W. R. Ladner,Proc. Roy. Soc. 229A, 387 (1955).

    Google Scholar 

  7. R. K. Nigam and P. P. Singh,Trans. Faraday Soc. 65, 950 (1969).

    Google Scholar 

  8. A. Nissema and H. Saynajakangas,Finn. Chem. Lett. 129 (1976).

  9. P. J. Flory,J. Am. Chem. Soc. 86, 3507, 3514 (1964).

    Google Scholar 

  10. P. J. Flory,J. Am. Chem. Soc. 87, 1833 (1965);Disc. Faraday Soc. 49, 7 (1970).

    Google Scholar 

  11. A. Abe and P. J. Flory,J. Am. Chem. Soc. 87, 1838 (1965).

    Google Scholar 

  12. R. A. Orwoll and P. J. Flory,J. Chem. Educ. 89, 6814, 6822 (1967).

    Google Scholar 

  13. I. Prigogine,The Molecular Theory of Solutions, (North-Holland Pub. Co., Amsterdam, 1957).

    Google Scholar 

  14. I. Prigogine, N. Trappeniers, and V. Mathot,Disc. Faraday Soc. 15, 93 (1953);J. Chem. Phys. 21, 559 (1953).

    Google Scholar 

  15. L. Tonks,Phys. Rev. 50, 955 (1936).

    Google Scholar 

  16. H. Eyring,J. Chem. Phys. 4, 283 (1936).

    Google Scholar 

  17. H. Eyring and J. O. Hirschfelder,J. Phys. Chem. 41, 249 (1937).

    Google Scholar 

  18. J. O. Hirschfelder,J. Chem. Educ. 16, 540 (1939).

    Google Scholar 

  19. A. Bondi,Physical Properties of Molecular, Liquids and Glasses (New York, 1968).

  20. S. E. Wood and J. A. Gray,J. Am. Chem. Soc. 74, 3729 (1952).

    Google Scholar 

  21. S. E. Wood and A. E. Austin,J. Am. Chem. Soc. 67, 480 (1945).

    Google Scholar 

  22. F. D. Rossini,Selected Values of Physical Thermodynamic Properties of Hydrocarbons and Related Compounds. (API Research Project 44; Carnegie Press; Pittsburgh, Pennsylvania, 1953).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aicart, E., Tardajos, G. & Peña, M.D. Correlation of the prigogine-flory theory with isothermal compressibility data. I. Systems with quasi-spherical molecules. J Solution Chem 12, 41–51 (1983). https://doi.org/10.1007/BF00650711

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650711

Key words

Navigation