Skip to main content
Log in

Thermodynamic transfer functions for urea and thiourea from water to water-tetrahydrofuran mixtures from precise vapor-pressure measurements

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The rate of change of the standard chemical potential with solvent composition,\(\partial \bar G_0 /\partial Z\), has been calculated from precise vapor-pressure measurements for urea at three temperatures and for thiourea at 298.15°K in water-tetrahydrofuran (THF) mixtures. From these results the standard free energy of transfer ΔG ot of the solutes from water to various water-THF mixtures has been obtained together with the standard molar entropy ΔS ot and the standard molar enthalpy ΔH ot of transfer at 298.15°K in the case of urea. The quantity ΔG ot for urea is negative in the water-rich region and positive for mole fractions THF>0.2. There is a nearly complete compensation between ΔH ot andTΔS ot at 298.15°K up to mole fraction THF=0.5. These phenomena can be partly related to the structure in H2O-THF mixtures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. B. Wetlaufer, S. K. Malik, L. Stoller, and R. I. Coffin, Jr.,J. Am. Chem. Soc. 86, 509 (1964).

    Google Scholar 

  2. S. A. Shuchukarev and T. A. Tolmacheva,Zh. Strukt. Khim. 9, 21 (1968).

    Google Scholar 

  3. A. Ben-Naim and S. Baer,Trans. Faraday Soc. 60, 1736 (1964).

    Google Scholar 

  4. V. A. Mikhailov, E. F. Grigor'eva, and I. I. Semina,Zh. Strukt. Khim. 9, 958 (1968).

    Google Scholar 

  5. V. A. Mikhailov and E. F. Grigor'eva,Zh. Strukt. Khim. 9, 788 (1968).

    Google Scholar 

  6. E. J. Cohn, T. L. McMeekin, J. T. Edsall, and J. H. Weare,J. Am. Chem. Soc. 56, 2270 (1934).

    Google Scholar 

  7. D. Bax, M. Alfenaar, and C. L. De Ligny,Rec. Trav. Chim. 90, 1002 (1971).

    Google Scholar 

  8. G. Akerlof,J. Am. Chem. Soc. 52, 2353 (1930).

    Google Scholar 

  9. D. Feakins and P. J. Voice,J. Chem. Soc. Faraday Trans. 1 68, 1390 (1972), and references therein.

    Google Scholar 

  10. K. K. Kundu, A. K. Rakshit, and M. N. Das,Electrochim. Acta 17, 1921 (1972).

    Google Scholar 

  11. Y. Pointud, J. Juillard, J. P. Morel, and L. Avédikian,Electrochim. Acta 19, 229 (1974).

    Google Scholar 

  12. R. N. Roy and B. Sen,J. Chem. Eng. Data 13, 79 (1968).

    Google Scholar 

  13. R. N. Roy and A. L. M. Bothwell,J. Chem. Eng. Data 16, 747 (1971).

    Google Scholar 

  14. R. G. Bates, inHydrogen-Bonded Solvent Systems, A. K. Covington and P. Jones, eds. (Taylor and Francis, Ltd., 1968), and references therein.

  15. J. P. Morel and J. Morin,J. Chim. Phys. 67, 2018 (1970).

    Google Scholar 

  16. C. Treiner,J. Chim. Phys. 70, 1183 (1973).

    Google Scholar 

  17. E. Grünwald and A. L. Bacarella,J. Am. Chem. Soc. 80, 3840 (1958).

    Google Scholar 

  18. H. C. Van Ness,Classical Thermodynamics of Non-Electrolyte Solutions (Pergamon Press, 1964).

  19. C. Treiner, J. F. Bocquet, and M. Chemla,J. Chim. Phys. 70, 68 (1973).

    Google Scholar 

  20. J. L. Hawes and R. L. Kay,J. Phys. Chem. 69, 2420 (1965).

    Google Scholar 

  21. G. Scatchard, W. J. Hamer, and S. E. Wood,J. Am. Chem. Soc. 60, 3061 (1938).

    Google Scholar 

  22. Ei. Koizumist Shinichi Ouchi,Nippon Zasshi 91, 501 (1970).

    Google Scholar 

  23. V. A. Shnitko and V. B. Kogan,Zh. Prikl. Khim. 41, 1305 (1968).

    Google Scholar 

  24. F. Franks, M. A. Quickenden, D. S. Reid, and B. Watson,Trans. Faraday Soc. 66, 582 (1970).

    Google Scholar 

  25. R. Signer, H. Arm, and H. Daeniker,Helv. Chim. Acta 52, 2347 (1969).

    Google Scholar 

  26. S. Cabani, G. Conti, and L. Lepori,Trans. Faraday Soc. 67, 1943 (1971).

    Google Scholar 

  27. D. N. Glew and H. Watts,Can. J. Chem. 51, 1933 (1973).

    Google Scholar 

  28. D. N. Glew, H. D. Mak, and N. S. Rath, inHydrogen-Bonded Solvent Systems, A. K. Covington and P. Jones, eds. (Taylor and Francis, Ltd., 1968), p. 195.

  29. F. Franks, inHydrogen-Bonded Solvent Systems, A. K. Covington and P. Jones, eds. (Taylor and Francis, Ltd., 1968), p. 31.

  30. M. D. Zeidler, inWater, A Comprehensive Treatise, Vol. 2, F. Franks, ed. (Plenum Press, 1973), Chap. 10.

  31. C. L. De Ligny, D. Bax, M. Alfenaar, and M. G. L. Elferink,Rec. Trav. Chim. 88, 1183 (1969).

    Google Scholar 

  32. E. Angelsecu and F. Cornea,An. Univ. C.I.Parhon, Bucuresti, Ser. Stiint. Nat. 15, 87 (1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Treiner, C., Tzias, P. Thermodynamic transfer functions for urea and thiourea from water to water-tetrahydrofuran mixtures from precise vapor-pressure measurements. J Solution Chem 4, 471–483 (1975). https://doi.org/10.1007/BF00650686

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650686

Key words

Navigation