Skip to main content
Log in

Simultaneous flow measurement of specific heats and thermal expansion coefficients of liquids: Aqueoust-BuOH mixtures and neat alkanols and alkanediols at 25°C

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A flow method is described for the simultaneous measurement of volumetric specific heat capacities c p v and thermal expansion coefficients α of liquids, using a Picker heat capacity microcalorimeter. the method involves a simple sequence of operations in which the calorimeter unit is used alternately to measure a difference in volumetric specific heats at constant flow rate and temperature, or a flow rate variation resulting from a temperature scan on a flow cell. The precision of the method in α measurements is close to 1% which is comparable to that of current dilatometric methods; the overall time for the combined c p v-α measurement is less than 30 minutes. Typical uses and reliability of the method are illustrated through results for aqueous NaCl solutions, t-BuOH-water mixtures, and α,ω-diols (C2−C5) at 25°C. The α and c p v values in homologous series of normal alkanes, alcohols and diols appear well represented by equations comprising two contributions, one related to the hydrocarbon chain length, the other dependent on the number density of −OH groups. The general trends in these data and comparison with similar results for H2O2 and H2O illustrate the magnitude of the c p v and α ‘anomalies’ in liquid water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Jolicoeur, ‘Thermodynamic Flow Methods in Biochemistry, Calorimetry and Dilatometry,’ inMethods of Biochemical Analysis, D. Glick, ed. (John Wiley, New York, 1981), P. 171.

    Google Scholar 

  2. L. Ter Minassian, P. Pruzan, and A. Soulard,J. Chem. Phys. 75, 3064 (1981).

    Google Scholar 

  3. J. L. Fortier, M.-A. Simard, P. Picker, and C. Jolicoeur,Rev. Sci. Instrum. 50, 1474 (1979).

    Google Scholar 

  4. P. Picker, P.-A. Leduc, P. R. Philip, and J. E. Desnoyers,J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  5. For recent references, see for example: G. Perron, A. Roux, and J. E. Desnoyers,Can. J. Chem. 59, 3049 (1981); J.-J. Spitzer, I. V. Olofsson, P. P. Singh, and L. G. Hepler,J. Chem. Thermodyn. 11, 233 (1979); F. J. Millero, G. Perron, and J. E. Desnoyers,J. Geophys. Chem. 78, 4499 (1973); A. L. Surdo, W.-Y. Wen, and C. Jolicoeur,J. Solution Chem. 8, 449 (1979); M. A. Willamanan, C. Casanova, A. H. Roux, and J.-P. E. Grolier,J. Chem. Thermodyn. 14, 251 (1982); D. Smith-Magowan, R. H. Wood, and D. M. Tillett,J. Chem. Eng. Data 27, 335 (1982); J. L. Fortier and G. C. Benson,J. Chem. Thermodyn. 8, 411 (1976).

    Google Scholar 

  6. J. L. Fortier, G. C. Benson, and P. Picker,J. Chem. Thermodyn. 8, 289 (1976).

    Google Scholar 

  7. P. Picker, E. Tremblay, and C. Jolicoeur,J. Solution Chem. 3, 377 (1974).

    Google Scholar 

  8. I. V. Olofsson,J. Chem. Thermodyn. 11, 1005 (1979).

    Google Scholar 

  9. J. E. Desnoyers, C. de Visser, G. Perron and P. Picker,J. Solution Chem. 5, 605 (1976).

    Google Scholar 

  10. M.-A. Simard and J. L. Fortier,Can. J. Chem. 59, 3208 (1981).

    Google Scholar 

  11. G. S. Kell,J. Chem. Eng. Data 20, 97 (1975).

    Google Scholar 

  12. N. S. Osborne, H. F. Stimson, and D. C. Ginnings,J. Res. Nat. Bur. Stand. 23, 197 (1939).

    Google Scholar 

  13. L. A. Dunn,Trans. Faraday Soc. 64, 2951 (1968).

    Google Scholar 

  14. F. T. Gucker,J. Am. Chem. Soc. 56, 1017 (1934).

    Google Scholar 

  15. F. J. Millero,J. Phys. Chem. 74, 356 (1970).

    Google Scholar 

  16. G. Perron, J. L. Fortier, and J. E. Desnoyers,J. Chem. Thermodyn. 7, 1177 (1975).

    Google Scholar 

  17. N. Desrosiers, Ph.D. Thesis, University of Sherbrooke (1975).

  18. C. de Visser, G. Perron, and J. E. Desnoyers,Can. J. Chem. 55, 856 (1977).

    Google Scholar 

  19. A. Hvidt, R. Moss, and G. Nieslen,Acta Chem. Scand. 32, 274 (1978).

    Google Scholar 

  20. L. Avedikian, G. Perron, and J. E. Desnoyers,J. Solution Chem. 4, 331 (1975).

    Google Scholar 

  21. R. Arnaud, L. Avedikian, and J. P. Morel,J. Chem. Phys. 69, 45 (1972).

    Google Scholar 

  22. F. Franks and H. T. Smith,J. Chem. Eng. Data 13, 538 (1968).

    Google Scholar 

  23. C. Jolicoeur and G. Lacroix,Can. J. Chem. 54, 624 (1976).

    Google Scholar 

  24. E. M. Woolley and L. G. Hepler,Can. J. Chem. 55, 158 (1977).

    Google Scholar 

  25. C. Jolicoeur, L.-L. Lemelin, and R. Lapalme,J. Phys. Chem. 83, 2806 (1979).

    Google Scholar 

  26. R. C. Wilholt and B. J. Zwolinski,Journal of Physical and Chemical Reference Data Vol. 2, Suppl. No. 1 (1973).

  27. TRC Tables, Selected Values of Properties of Chemical Compounds, Vol. I (d), Thermodynamics Research Center Data Project, Texas A&M University (1966).

  28. International Critical Tables of Numerical Data, Vol. III, p. 27–30, National Research Council of U.S.A. (McGraw-Hill, New York, 1928).

  29. F.-M. Lee, L. E. Lahti and C. E. Stoops,J. Chem. Eng. Data 21, 36 (1976).

    Google Scholar 

  30. G. C. Benson and O. Kiyohara,J. Solution Chem. 9, 791 (1980).

    Google Scholar 

  31. J. L. Hales and J. H. Ellender,J. Chem. Thermodyn. 8, 1177 (1976).

    Google Scholar 

  32. TRCHP Tables, Selected Values of Properties of Hydrocarbons and Related Compounds, Vol. II (d), Thermodynamics Research Center Hydrocarbon Project, Texas A&M University (1973).

  33. W. C. Schumb, C. N. Satterfield, and R. L. Wentworth, inHydrogen Peroxide (Reinhold, New York, 1955).

    Google Scholar 

  34. J. Timmermans, inPhysico-Chemical Constants of Pure Organic Compounds, Vol. I and II (Elsevier, New York, 1965).

    Google Scholar 

  35. TRC Tables, Selected Values of Properties of Chemical Compounds, Ref. 27, Vol. III (v). Thermodynamics Research Center Data Project, Texas A&M University (1966).

  36. N. Nichols, R. Sköld, C. Spink, and I. Wadsö,J. Chem. Thermodyn. 8, 993 (1976).

    Google Scholar 

  37. M. Oguni and C. A. Angell,J. Chem. Phys. 73, 1948 (1980).

    Google Scholar 

  38. R. Lumry, C. Jolicoeur, E. Battistel, L.-L. Lemelin, and A. Anusien, To be published.

  39. L. G. Hepler,Can. J. Chem. 47, 4613 (1969).

    Google Scholar 

  40. H. S. Frank, inWater: A Comprehensive Treatise, F. Franks, ed., Vol. I, (Plenum Press, New York, 1972).

    Google Scholar 

  41. R. Lumry, E. Battistel, and C. Jolicoeur,Trans. Faraday Soc., submitted.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alary, J.F., Simard, M.A., Dumont, J. et al. Simultaneous flow measurement of specific heats and thermal expansion coefficients of liquids: Aqueoust-BuOH mixtures and neat alkanols and alkanediols at 25°C. J Solution Chem 11, 755–776 (1982). https://doi.org/10.1007/BF00650517

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650517

Key words

Navigation