Skip to main content
Log in

Seawater—A test of multicomponent electrolyte solution theories. II. Enthalpy of mixing and dilution of the major sea salts

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In a continuing effort to predict the physicochemical properties of seawater from the properties of single aqueous electrolyte solutions, the pairwise heats of mixing at constant molal ionic strength,I=1.0 ional, have been determined for the six possible pairs of salts from the set (NaCl, Na2SO4, MgCl2, MgSO4) at 30°C. In addition, heats of dilution for two aqueous solutions formed from these salts and havingI=1.0 ional have been determined at 30°C. In order to present the most thermodynamically consistent results, it was found necessary to apply a correction term to the relative apparent equivalent enthalpies given in the literature at 30°C. These correction terms derived from a consideration of published results on heats of dilution at very low concentrations. Further, in order to make predictions for seawater at 25°C, it was deemed desirable to refit existing heat-capacity data. The heats relative apparent equivalent enthalpies for the two mixtures mentioned as well as for seawater. The estimates are based on the theoretical equation of Reilly and Wood for charge-asymmetric mixtures which derives from the work of Friedman. In the most applicable cases, the estimates agree with experimental relative apparent equivalent enthalpies to within 5%. In general, the results substantiate the theoretical equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. J. Millero,J. Solution Chem. 2, 1 (1973).

    Google Scholar 

  2. T. F. Young,Rec. Chem. Prog. 12, 81 (1951).

    Google Scholar 

  3. T. F. Young and M. B. Smith,J. Phys. Chem. 70, 716 (1954).

    Google Scholar 

  4. Y. C. Wu,J. Phys. Chem. 74, 3781 (1970).

    Google Scholar 

  5. F. J. Millero, inThe Sea, Vol. 5,Marine Chemistry, A. E. Maxwell et al., eds. (John Wiley and Sons, New York, 1974).

    Google Scholar 

  6. H. S. Harned and R. A. Robinson,Multicomponent Electrolyte Solutions (Pergamon Press, New York, 1968).

    Google Scholar 

  7. H. S. Anderson and R. H. Wood, inWater, a Comprehensive Treatise, Vol. 3, F. Franks, ed. (Plenum Press, 1973), Chap. 2.

  8. R. H. Wood and P. J. Reilly,Ann. Rev. Phys. Chem. 21, 287 (1970).

    Google Scholar 

  9. H. L. Friedman,Ionic Solution Theory (John Wiley-Interscience, New York, 1962).

    Google Scholar 

  10. H. L. Friedman,J. Solution Chem. 1, 387, 413, 419 (1972).

    Google Scholar 

  11. H. L. Friedman and C. V. Krishnan,J. Phys. Chem. 78, 1927 (1974).

    Google Scholar 

  12. R. H. Wood and M. V. Falcone,J. Phys. Chem. 79, 1540 (1975).

    Google Scholar 

  13. P. J. Reilly and R. H. Wood,J. Phys. Chem. 73, 4292 (1969).

    Google Scholar 

  14. W. H. Leung and F. J. Millero,J. Chem. Thermodyn. 7, 1067 (1975).

    Google Scholar 

  15. F. J. Millero, L. D. Hansen, and E. V. Hoff,J. Mar. Res. 31, 21 (1973).

    Google Scholar 

  16. R. H. Wood, M. Ghamkhar, and J. D. Patton,J. Phys. Chem. 73, 4298 (1969).

    Google Scholar 

  17. R. B. Cassel and R. H. Wood,J. Phys. Chem. 78, 1924 (1974).

    Google Scholar 

  18. R. F. Srna and R. H. Wood,J. Phys. Chem. 79, 1535 (1975).

    Google Scholar 

  19. W. H. Leung and F. J. Millero,J. Solution Chem. 4, 145 (1975).

    Google Scholar 

  20. H. P. Hopkins, Jr., W. C. Duer, and F. J. Millero,J. Solution Chem. (1976), in press.

  21. S. Lee, The Apparent and Partial Molal Volumes of Electrolytes in Water and in Aqueous Sodium Chloride Solutions, Dissertation, Yale University (1965).

  22. F. J. Millero and W. Masterton,J. Phys. Chem. 78, 1287 (1974).

    Google Scholar 

  23. G. N. Lewis and M. Randall, inThermodynamics, 2nd rev. ed., K. S. Pitzer and L. Brewer, eds. (McGraw-Hill, New York, 1961).

    Google Scholar 

  24. H. S. Jongenburger and R. H. Wood,J. Phys. Chem. 69, 4231 (1965).

    Google Scholar 

  25. V. B. Parker,Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. 2 (NSRDS-NBS 2), U.S. Department of Commerce, April 1, 1965.

  26. H. P. Snipes, C. Manly, and D. D. Ensor,J. Chem. Eng. Data 20, 287 (1975).

    Google Scholar 

  27. P. T. Thompson, D. E. Smith, and R. H. Wood,J. Chem. Eng. Data 19, 386 (1974).

    Google Scholar 

  28. E. Lange and H. Streeck,Z. Phys. Chem. 152A, 1 (1931).

    Google Scholar 

  29. E. Lange and H. Streeck,Z. Phys. Chem. 157A, 1 (1931).

    Google Scholar 

  30. J.-L. Fortier, P.-A. Leduc, and J. E. Desnoyers,J. Solution Chem. 3, 323 (1974).

    Google Scholar 

  31. G. Perron, J. E. Desnoyers, and F. J. Millero,Can. J. Chem. 53, 1134 (1975).

    Google Scholar 

  32. G. Perron, J. E. Desnoyers, and F. J. Millero,Can. J. Chem. 52, 3738 (1974).

    Google Scholar 

  33. F. J. Millero, inThe Oceans Handbook, R. A. Horne, ed. (Marcel Dekker, New York, 1976, in press), Chap. 4.

    Google Scholar 

  34. F. J. Millero, G. Perron, and J. E. Desnoyers,J. Geophys. Res. 78, 4499 (1973).

    Google Scholar 

  35. V. B. Parker, D. D. Wagman, and W. H. Evans, Selected Values of Chemical Thermodynamic Properties,Nat. Bur. Stand. Tech. Note 270-6, U. S. Government Printing Office, November 1971.

  36. J. E. Desnoyers, C. de Visser, G. Perron, and P. Picker,J. Solution Chem., submitted.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Taken in part from the Ph.D. dissertation of W. H. Leung, University of Miami, Miami, Florida 33149.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duer, W.C., Leung, W.H., Oglesby, G.B. et al. Seawater—A test of multicomponent electrolyte solution theories. II. Enthalpy of mixing and dilution of the major sea salts. J Solution Chem 5, 509–528 (1976). https://doi.org/10.1007/BF00650467

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650467

Key words

Navigation