Journal of Solution Chemistry

, Volume 5, Issue 7, pp 509–528 | Cite as

Seawater—A test of multicomponent electrolyte solution theories. II. Enthalpy of mixing and dilution of the major sea salts

  • W. C. Duer
  • W. H. Leung
  • G. B. Oglesby
  • F. J. Millero


In a continuing effort to predict the physicochemical properties of seawater from the properties of single aqueous electrolyte solutions, the pairwise heats of mixing at constant molal ionic strength,I=1.0 ional, have been determined for the six possible pairs of salts from the set (NaCl, Na2SO4, MgCl2, MgSO4) at 30°C. In addition, heats of dilution for two aqueous solutions formed from these salts and havingI=1.0 ional have been determined at 30°C. In order to present the most thermodynamically consistent results, it was found necessary to apply a correction term to the relative apparent equivalent enthalpies given in the literature at 30°C. These correction terms derived from a consideration of published results on heats of dilution at very low concentrations. Further, in order to make predictions for seawater at 25°C, it was deemed desirable to refit existing heat-capacity data. The heats relative apparent equivalent enthalpies for the two mixtures mentioned as well as for seawater. The estimates are based on the theoretical equation of Reilly and Wood for charge-asymmetric mixtures which derives from the work of Friedman. In the most applicable cases, the estimates agree with experimental relative apparent equivalent enthalpies to within 5%. In general, the results substantiate the theoretical equation.

Key words

Enthalpy heats of dilution heats of mixing sea salts electrolyte seawater 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. J. Millero,J. Solution Chem. 2, 1 (1973).Google Scholar
  2. 2.
    T. F. Young,Rec. Chem. Prog. 12, 81 (1951).Google Scholar
  3. 3.
    T. F. Young and M. B. Smith,J. Phys. Chem. 70, 716 (1954).Google Scholar
  4. 4.
    Y. C. Wu,J. Phys. Chem. 74, 3781 (1970).Google Scholar
  5. 5.
    F. J. Millero, inThe Sea, Vol. 5,Marine Chemistry, A. E. Maxwell et al., eds. (John Wiley and Sons, New York, 1974).Google Scholar
  6. 6.
    H. S. Harned and R. A. Robinson,Multicomponent Electrolyte Solutions (Pergamon Press, New York, 1968).Google Scholar
  7. 7.
    H. S. Anderson and R. H. Wood, inWater, a Comprehensive Treatise, Vol. 3, F. Franks, ed. (Plenum Press, 1973), Chap. 2.Google Scholar
  8. 8.
    R. H. Wood and P. J. Reilly,Ann. Rev. Phys. Chem. 21, 287 (1970).Google Scholar
  9. 9.
    H. L. Friedman,Ionic Solution Theory (John Wiley-Interscience, New York, 1962).Google Scholar
  10. 10.
    H. L. Friedman,J. Solution Chem. 1, 387, 413, 419 (1972).Google Scholar
  11. 11.
    H. L. Friedman and C. V. Krishnan,J. Phys. Chem. 78, 1927 (1974).Google Scholar
  12. 12.
    R. H. Wood and M. V. Falcone,J. Phys. Chem. 79, 1540 (1975).Google Scholar
  13. 13.
    P. J. Reilly and R. H. Wood,J. Phys. Chem. 73, 4292 (1969).Google Scholar
  14. 14.
    W. H. Leung and F. J. Millero,J. Chem. Thermodyn. 7, 1067 (1975).Google Scholar
  15. 15.
    F. J. Millero, L. D. Hansen, and E. V. Hoff,J. Mar. Res. 31, 21 (1973).Google Scholar
  16. 16.
    R. H. Wood, M. Ghamkhar, and J. D. Patton,J. Phys. Chem. 73, 4298 (1969).Google Scholar
  17. 17.
    R. B. Cassel and R. H. Wood,J. Phys. Chem. 78, 1924 (1974).Google Scholar
  18. 18.
    R. F. Srna and R. H. Wood,J. Phys. Chem. 79, 1535 (1975).Google Scholar
  19. 19.
    W. H. Leung and F. J. Millero,J. Solution Chem. 4, 145 (1975).Google Scholar
  20. 20.
    H. P. Hopkins, Jr., W. C. Duer, and F. J. Millero,J. Solution Chem. (1976), in press.Google Scholar
  21. 21.
    S. Lee, The Apparent and Partial Molal Volumes of Electrolytes in Water and in Aqueous Sodium Chloride Solutions, Dissertation, Yale University (1965).Google Scholar
  22. 22.
    F. J. Millero and W. Masterton,J. Phys. Chem. 78, 1287 (1974).Google Scholar
  23. 23.
    G. N. Lewis and M. Randall, inThermodynamics, 2nd rev. ed., K. S. Pitzer and L. Brewer, eds. (McGraw-Hill, New York, 1961).Google Scholar
  24. 24.
    H. S. Jongenburger and R. H. Wood,J. Phys. Chem. 69, 4231 (1965).Google Scholar
  25. 25.
    V. B. Parker,Nat. Stand. Ref. Data Ser., Nat. Bur. Stand. 2 (NSRDS-NBS 2), U.S. Department of Commerce, April 1, 1965.Google Scholar
  26. 26.
    H. P. Snipes, C. Manly, and D. D. Ensor,J. Chem. Eng. Data 20, 287 (1975).Google Scholar
  27. 27.
    P. T. Thompson, D. E. Smith, and R. H. Wood,J. Chem. Eng. Data 19, 386 (1974).Google Scholar
  28. 28.
    E. Lange and H. Streeck,Z. Phys. Chem. 152A, 1 (1931).Google Scholar
  29. 29.
    E. Lange and H. Streeck,Z. Phys. Chem. 157A, 1 (1931).Google Scholar
  30. 30.
    J.-L. Fortier, P.-A. Leduc, and J. E. Desnoyers,J. Solution Chem. 3, 323 (1974).Google Scholar
  31. 31.
    G. Perron, J. E. Desnoyers, and F. J. Millero,Can. J. Chem. 53, 1134 (1975).Google Scholar
  32. 32.
    G. Perron, J. E. Desnoyers, and F. J. Millero,Can. J. Chem. 52, 3738 (1974).Google Scholar
  33. 33.
    F. J. Millero, inThe Oceans Handbook, R. A. Horne, ed. (Marcel Dekker, New York, 1976, in press), Chap. 4.Google Scholar
  34. 34.
    F. J. Millero, G. Perron, and J. E. Desnoyers,J. Geophys. Res. 78, 4499 (1973).Google Scholar
  35. 35.
    V. B. Parker, D. D. Wagman, and W. H. Evans, Selected Values of Chemical Thermodynamic Properties,Nat. Bur. Stand. Tech. Note 270-6, U. S. Government Printing Office, November 1971.Google Scholar
  36. 36.
    J. E. Desnoyers, C. de Visser, G. Perron, and P. Picker,J. Solution Chem., submitted.Google Scholar

Copyright information

© Plenum Publishing Corporation 1976

Authors and Affiliations

  • W. C. Duer
    • 1
  • W. H. Leung
    • 1
  • G. B. Oglesby
    • 1
  • F. J. Millero
    • 1
  1. 1.Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiami

Personalised recommendations