Skip to main content
Log in

Heat-capacity changes and partial molal heat capacities of several amino acids in water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Integral enthalpies of solution of several amino acids in water at low concentrations have been determined at 25 and 35°C. These data have been used to derive the heat-capacity change ΔC op on dissolution at 30°C. Partial molal heat capacities C op2 have been obtained by combining ΔC op with C op2 (heat capacity of pure solid amino acids). The results indicate that the increments in ΔC op and C op2 values per CH2 group increment in the homologous series of α-amino acids are constant and in agreement with those found for other homologous series of compounds containing monofunctional groups. However, this is not the case with amino acids having the NH +3 group at the terminal position. The present work also indicates that, as the NH +3 group is shifted away from the COO group, hydrophobic hydration decreases, as indicated by a decrease in ΔC op and C op2 . the results on various isomers of amino acids show that branching of alkyl groups has no effect on ΔC op and C op2 , indicating that hydrophobic hydration is unaffected by branching. The effect of substitution of H by OH and of CH3 by\(CH_2 - \mathop C\limits^{\mathop \parallel \limits^O } - NH_2 \) groups in some amino acids has also been studied and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. S. Sarma and J. C. Ahluwalia,Chem. Soc. Rev. 2, 203 (1973).

    Google Scholar 

  2. B. Chawla and J. C. Ahluwalia,J. Solution Chem. 4, 383 (1975).

    Google Scholar 

  3. J. Konicek and I. Wadsö,Acta Chem. Scand. 25, 1541 (1971).

    Google Scholar 

  4. K. Kusano, J. Suurkuusk, and I. Wadsö,J. Chem. Thermodyn. 5, 757 (1973).

    Google Scholar 

  5. S. Cabani, C. Conti, A. Martinelli, and E. Matteoli,J. Chem. Soc. Faraday 1 69, 2112 (1973).

    Google Scholar 

  6. E. M. Arnett, B. Kover, and J. V. Carter,J. Am. Chem. Soc. 91, 4028 (1968).

    Google Scholar 

  7. C. H. Spink and I. Wadsö,J. Chem. Thermodyn. 7, 561 (1975).

    Google Scholar 

  8. T. S. Sarma, R. K. Mohanty, and J. C. Ahluwalia,Trans. Faraday Soc. 65, 2333 (1969).

    Google Scholar 

  9. S. Subramanian and J. C. Ahluwalia,J. Phys. Chem. 72, 2525 (1968).

    Google Scholar 

  10. S. Gunn,J. Phys. Chem. 69, 2902 (1965).

    Google Scholar 

  11. V. B. Parker, Thermal Properties of Aqueous Uni-univalent Electrolytes, NSRDS-NBS-2, Washington, D.C. (1965).

  12. G. C. Kresheck and L. Benjamin,J. Phys. Chem. 68, 2476 (1964).

    Google Scholar 

  13. C. H. Spink and M. Aucker,J. Chem. Phys. 74, 1742 (1970).

    Google Scholar 

  14. G. C. Kresheck, H. Schneider, and H. A. Scheraga,J. Phys. Chem. 69, 3132 (1965).

    Google Scholar 

  15. C. A. Zittle and C. L. A. Schmidt,J. Biol. Chem. 108, 161 (1935).

    Google Scholar 

  16. C. M. Criss and J. W. Cobble,J. Am. Chem. Soc. 83, 3223 (1961).

    Google Scholar 

  17. G. S. Parks,J. Am. Chem. Soc. 55, 2733 (1933).

    Google Scholar 

  18. H. M. Huffman and E. L. Ellis,J. Am. Chem. Soc. 59, 2150 (1937).

    Google Scholar 

  19. J. O. Hutchens, A. G. Cole, and J. W. Stout,J. Am. Chem. Soc. 82, 4813 (1960).

    Google Scholar 

  20. J. O. Hutchens, A. G. Cole, and J. W. Stout,J. Phys. Chem. 67, 1128 (1963).

    Google Scholar 

  21. J. O. Hutchens, A. G. Cole and J. W. Stout,J. Phys. Chem. 67, 1852 (1963).

    Google Scholar 

  22. A. G. Cole, J. O. Hutchens, and J. W. Stout,J. Biol. Chem. 239, 4194 (1964).

    Google Scholar 

  23. J. O. Hutchens, inHandbook of Biochemistry, H. A. Sober, ed. (Chemical Rubber Company, Cleveland, 1968), p. B-5.

    Google Scholar 

  24. H. M. Huffman and H. Bersook,J. Am. Chem. Soc. 54, 4297 (1932).

    Google Scholar 

  25. J. O. Hutchens, A. G. Cole, R. A. Robie, and J. W. Stout,J. Biol. Chem. 238, 2407 (1963).

    Google Scholar 

  26. J. C. Ahluwalia, G. Perron, C. Ostiguy, and J. E. Desnoyers, to be published.

  27. F. T. Gucker, Jr., W. L. Ford, and C. E. Moser,J. Phys. Chem. 43, 153 (1959).

    Google Scholar 

  28. F. T. Gucker and T. W. Allen,J. Am. Chem. Soc. 64, 191 (1942).

    Google Scholar 

  29. G. C. Kresheck,J. Chem. Phys. 52, 5966 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, K.P., Ahluwalia, J.C. Heat-capacity changes and partial molal heat capacities of several amino acids in water. J Solution Chem 5, 491–507 (1976). https://doi.org/10.1007/BF00650466

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650466

Key words

Navigation