Skip to main content
Log in

Specific interactions and single-lon activity coefficients in mixed electrolyte solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A reexamination of Guggenheim's theory of specific interactions for dilute aqueous electrolyte solutions shows that the parameters of the theory should include terms for interactions between like-charged ions. The equations developed are analogous to those in Pitzer's treatment of concentrated solutions, and the inclusion of ion-solvent interaction parameters allows comparison with the Stokes and Robinson hydration theory treatment. As with hydration theory, specific-interaction theory predicts differences in single-ion activity coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Guggenheim,Philos. Mag. 19, 588 (1935).

    Google Scholar 

  2. E. A. Guggenheim,K. D. Vidensk. Selsk. Mat. Fys. Medd. 30, No. 14 (1955).

  3. E. A. Guggenheim and J. C. Turgeon,Trans. Faraday Soc 51, 747 (1955).

    Google Scholar 

  4. J. N. Bronsted,J. Am. Chem. Soc. 70, 1870 (1948).

    Google Scholar 

  5. K. S. Pitzer and L. Brewer,Thermodynamics (McGraw-Hill, New York, 1961).

    Google Scholar 

  6. C. J. Downes,J. Phys. Chem. 74, 2153 (1970).

    Google Scholar 

  7. G. Scatchard,J. Phys. Chem. 58, 600 (1954).

    Google Scholar 

  8. E. A. Guggenheim,Trans. Faraday Soc. 62, 3446 (1966).

    Google Scholar 

  9. K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).

    Google Scholar 

  10. K. S. Pitzer and Guillermo Mayorga,J. Phys. Chem. 77, 2300 (1973).

    Google Scholar 

  11. K. S. Pitzer and Guillermo MayorgaJ. Solution Chem. 3, 539 (1974).

    Google Scholar 

  12. K. S. Pitzer and J. J. Kim,J. Am. Chem. Soc. 96, 5701 (1974).

    Google Scholar 

  13. K. S. Pitzer,J. Solution Chem. 4, 249 (1975).

    Google Scholar 

  14. R. H. Stokes and R. A. Robinson,J. Am. Chem. Soc. 70, 1870 (1948).

    Google Scholar 

  15. R. H. Stokes and R. A. Robinson,J. Solution Chem. 2, 173 (1973).

    Google Scholar 

  16. R. G. Bates, B. R. Staples, and R. A. Robinson,Anal. Chem. 42, 867 (1970).

    Google Scholar 

  17. R. G. Bates and R. A. Robinson,Pure Appl. Chem. 37, 575 (1974).

    Google Scholar 

  18. R. G. Bates,Pure Appl. Chem. 36, 407 (1973).

    Google Scholar 

  19. A. D. Pethybridge and J. E. Prue, inInorganic Reaction Mechanisms, Part II, J. O. Edwards, ed. (John Wiley & Sons Inc., New York, 1972).

    Google Scholar 

  20. E. Guntelberg,Z. Phys. Chem. 123, 199 (1926).

    Google Scholar 

  21. J. E. Prue, A. J. Read, and G. Romeo,Trans. Faraday. Soc. 67, 420 (1971).

    Google Scholar 

  22. R. A. Robinson and R. G. BatesAnal. Chem. 45, 1684 (1973).

    Google Scholar 

  23. M. Whitfield,Marine Chem 1, 251 (1973).

    Google Scholar 

  24. M. Whitfield,Marine Chem. 3, 197 (1975).

    Google Scholar 

  25. J. V. Leyendekkers,Anal. Chem. 43, 1835 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panckhurst, M.H., Macaskill, J.B. Specific interactions and single-lon activity coefficients in mixed electrolyte solutions. J Solution Chem 5, 469–482 (1976). https://doi.org/10.1007/BF00650464

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650464

Key words

Navigation