Skip to main content
Log in

The coordination geometry of water in some salt hydrates

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The orientations of water molecules next to metal ions in salt hydrates are useful indications of the orientations which may be expected for water molecules which are next to metal ions in aqueous solution. A survey of the data for the salt hydrates shows that a water molecule may often be tetrahedral (i.e., coordinated to the metal ion, accepting a hydrogen bond from another water molecule, and donating two hydrogen bonds) if it is next to a +1 ion, a+2 ion, or a+3 ion of the rare earth series, although apparently not for smaller +3 ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Bol, G. J. A. Gerrits, and C. L. v. P. van Eck,J. Appl. Crystallogr. 3, 486 (1970).

    Google Scholar 

  2. L. Pauling,Nature of the Chemical Bond (Cornell University Press, Ithaca, New York, 1960), 3rd ed., p. 548.

    Google Scholar 

  3. A. F. Wells,Structural Inorganic Chemistry (Oxford University Press, London, 1945), p. 367.

    Google Scholar 

  4. W. H. Baur,Acta Crystallogr. B28, 1456 (1972).

    Google Scholar 

  5. W. H. Baur,Acta Crystallogr. 19, 909 (1965).

    Google Scholar 

  6. W. C. Hamilton and J. A. Ibers,Hydrogen Bonding in Solids (W. A. Benjamin, Inc., New York, 1968).

    Google Scholar 

  7. M. Falk and O. Knop, inWater, a Comprehensive Treatise, Vol. 2, F. Franks, ed. (Plenum Press, New York, 1973), Chap. 2.

    Google Scholar 

  8. G. Ferraris and M. Franchini-Angela.,Acta Crystallogr. B28, 3572 (1972).

    Google Scholar 

  9. International Tables for X-ray Crystallography, Vol. 1, N. Henry and K. Lonsdale, eds. (The Kynoch Press, Birmingham, 1965).

    Google Scholar 

  10. H. G. Smith, S. W. Peterson, and H. A. Levy,J. Chem. Phys. 48, 5561 (1968).

    Google Scholar 

  11. D. J. Cromer, M. I. Kay, and A. C. Larson,Acta Crystallogr. 22, 182 (1967).

    Google Scholar 

  12. P. P. Williams and C. S. Dent Glasser,Acta Crystallogr. B27, 2269 (1971).

    Google Scholar 

  13. V. M. Padmanabhan et al.,Acta Crystallogr. B27, 253 (1971).

    Google Scholar 

  14. G. Beurskens and G. A. Jeffrey,J. Chem. Phys. 41, 924 (1964).

    Google Scholar 

  15. G. Beurskens and G. A. Jeffrey,J. Chem. Phys. 41, 917 (1964).

    Google Scholar 

  16. D. J. Robinson and C. H. L. Kennard,Cryst. Struct. Commun. 1, 185 (1972).

    Google Scholar 

  17. W. H. Baur,Acta Crystallogr. B29, 139 (1973).

    Google Scholar 

  18. G. E. Bacon and W. E. Gardner,Proc. Roy. Soc. A246, 78 (1958).

    Google Scholar 

  19. D. J. Cromer, M. I. Kay, and A. C. Larson,Acta Crystallogr. 21, 383 (1966).

    Google Scholar 

  20. K. G. Shields and C. H. L. Kennard,Cryst. Struct. Commun. 1, 189 (1972).

    Google Scholar 

  21. G. Brown and R. Chidambaram,Acta Crystallogr. B25, 676 (1969).

    Google Scholar 

  22. S. K. Sikka and R. Chidambaram,Acta Crystallogr. B25, 310 (1969).

    Google Scholar 

  23. W. H. Baur,Acta Crystallogr. 17, 863 (1964).

    Google Scholar 

  24. G. Ferraris, D. W. Jones, and J. Yerkness,J. Chem. Soc. Dalton Trans, 816 (1973).

  25. K. Sasvari and G. A. Jeffrey,Acta Crystallogr. 20, 875 (1965).

    Google Scholar 

  26. N. A. Curry and D. W. Jones,J. Chem. Soc. (A), 3725 (1971).

  27. G. Ferraris, D. W. Jones, and J. Yerkness,Acta Crystallogr. B 27, 349 (1971).

    Google Scholar 

  28. D. R. Buchanan and D. M. Harris,Acta Crystallogr. B24, 954 (1968).

    Google Scholar 

  29. Z. M. El Saffar and G. M. Brown,Acta Crystallogr. B27, 66 (1971).

    Google Scholar 

  30. W. H. Baur,Acta Crystallogr. 17, 1167 (1964).

    Google Scholar 

  31. Z. M. El Saffar,J. Chem. Phys. 52, 4097 (1970).

    Google Scholar 

  32. J. J. Verbist et al.,J. Chem. Phys. 56, 3257 (1972).

    Google Scholar 

  33. W. C. Hamilton,Acta Crystallogr. 15, 353 (1962).

    Google Scholar 

  34. B. H. O'Connor and D. H. Dale,Acta Crystallogr. 21, 705 (1966).

    Google Scholar 

  35. R. Kleinoerg,J. Chem Phys. 50, 4690 (1970).

    Google Scholar 

  36. G. E. Bacon and N. A. Curry,Proc. Roy. Soc. A266, 95 (1962).

    Google Scholar 

  37. C. R. Hubbard, C. O. Quicksall, and R. A. Jackson,Acta Crystallogr. B30, 2613 (1974).

    Google Scholar 

  38. H. G. Hertz, Nuclear magnetic Relaxation Spectroscopy, inWater, a Comprehensive Treatise, Vol. 3, F. Franks, ed. (Plenum Press, New York, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, H.L., Lewis, L. The coordination geometry of water in some salt hydrates. J Solution Chem 5, 445–455 (1976). https://doi.org/10.1007/BF00650462

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650462

Key words

Navigation