Skip to main content
Log in

II. Ionic association and mobility in propylene carbonate

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Conductance data are reported for Ph4AsPic, Ph4PPic, Ph4SbPic, Hex4NPic, Bu4PPic, Et4NSbCl6 in propylene carbonate at 25°C in the concentration range 1×10−4 to 15×10−4 M. The data were analyzed by the Justice modification of the Fuoss-Hsia equation and all salts studied were found to be associated and to form solvent separated ion pairs. Application of the Barthel-Bjerrum model of ion association permitted calculation of the non coulombic portion of the potentials of mean force, W±. Ionic limiting equivalent conductances of six ions were calculated using known values of R4N+, and Pic ions. Walden products of ions in propylene carbonate were examined in the light of modern ion mobility theories, including Boyd-Zwanzig, Hubbard-Onsager, and Hubbard-Kayser models of ion solvent interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Barthel, H. J. Gores, G. Schmeer, and R. Wachter,Topics in Current Chemistry, Vol. III (Springer Verlag, Heidelberg, 1982), p. 114.

    Google Scholar 

  2. H. V. Venkatasetty,Lithium Battery Technology (The Electrochemical Society, Pennington, New Jersey, 1984), Chap. 1.

    Google Scholar 

  3. R. Jasinski, inAdvances in Electrochemistry and Electrochemical Engineering, Vol. 8, C. W. Tobias, ed. (Wiley, New York, 1971).

    Google Scholar 

  4. W. H. Lee, inChemistry of Nonaqueous Solvents, Vol. 4, J. J. Lagowski, ed. (Academic Press, New York, 1976), Chap. 6.

    Google Scholar 

  5. J. F. Reardon,Electrochim. Acta 32, 1595 (1987).

    Google Scholar 

  6. N. N. Lichtin, B. Wasserman, E. Clougherty, J. Wasserman, and J. F. Reardon,J. Phys. Chem. 84, 2946 (1980).

    Google Scholar 

  7. G. W. Covell, A. Ledwigh, A. C. White, and H. J. Woods,J. Chem. Soc. (B) 227, (1970).

  8. R. M. Fuoss and K. L. Hsia,Proc. Ntl. Acad. Sci., USA 57, 1550 (1967).

    Google Scholar 

  9. R. Fernandez-Prini, inPhysical Chemistry of Organic Solvent Systems A. K. Covington and J. Dickenson, eds. (Plenum Press, New York, 1973), p. 565.

    Google Scholar 

  10. J. C. Justice,J. Chim. Phys. 65, 353, (1968).

    Google Scholar 

  11. R. Fernandez-Prini,Trans. Faraday Soc. 64, 2146 (1968).

    Google Scholar 

  12. T. Shedlovsky,J. Franklin Inst. 225, 739 (1938).

    Google Scholar 

  13. N. N. Lichtin, B. Wasserman, and J. F. Reardon,J. Phys. Chem. 85, 1590 (1981).

    Google Scholar 

  14. M. Salomon and E. J. Plichta,Electrochim. Acta 28, 1681 (1983).

    Google Scholar 

  15. R. L. Kay,J. Am. Chem. Soc. 82, 2099 (1960).

    Google Scholar 

  16. R. Zana, J. E. Desnoyers, G. Parron, R. L. Kay, and K. Lee,J. Phys. Chem. 86, 3996 (1982).

    Google Scholar 

  17. R. L. Kay,Water, A Comprehensive Treatise, Vol. 3, F. Frank, ed. (Plenum Press, New York, 1973), Vol. 3, Chap. 4.

    Google Scholar 

  18. J. Barthel, R. Wachter, and H. J. Gores,Modern Aspects of Electrochemistry, Vol. 13, B. E. Conway and J. O'M. Bockris, eds. (Plenum Press, New York, 1979), Chap. 1.

    Google Scholar 

  19. J. C. Coupez and M. L'Her,C. R. Acad. Sci. Ser C. 271, 357 (1970).

    Google Scholar 

  20. K. Izutsu, I. M. Kolthoff, T. Fujinaga, M. Hattori, and M. K. Chantooni,Anal. Chem. 49, 503 (1977).

    Google Scholar 

  21. A. F. Wells, inStructural Inorganic Chemistry, (Oxford University Press, 1975), p. 746.

  22. M. Born,Z. Phys. 1, 221 (1920).

    Google Scholar 

  23. R. M. Fuoss,Proc. Ntl. Acad. Sci. 45, 807 (1959).

    Google Scholar 

  24. R. H. Boyd,J. Chem. Phys. 35, 1281 (1961),39, 2376 (1963).

    Google Scholar 

  25. R. Zwanzig,J. Chem. Phys. 52, 3625 (1970).

    Google Scholar 

  26. J. Barthel,Pure and Appl. Chem. 57, 355 (1985).

    Google Scholar 

  27. R. Fernandez-Prini and G. Atkinson,J. Phys. Chem. 75, 239 (1971).

    Google Scholar 

  28. J. B. Hubbard and L. Onsager,J. Chem. Phys. 67, 4850 (1977).

    Google Scholar 

  29. J. B. Hubbard,J. Chem. Phys. 68, 1649 (1978).

    Google Scholar 

  30. D. F. Evans, T. Tominaga, J. B. Hubbard, and P. G. Wolynes,J. Phys. Chem. 83, 2669 (1979).

    Google Scholar 

  31. J. H. Chen and S. A. Adelman,J. Chem. Phys. 72, 2819 (1980).

    Google Scholar 

  32. J. B. Hubbard and R. F. Kayser,J. Chem. Phys. 74, 3635 (1981).

    Google Scholar 

  33. P. J. Stiles,Chem. Phys. Lett. 80, 73 (1981).

    Google Scholar 

  34. J. B. Hubbard and R. F. Kayser,Chem. Phys. 66, 377 (1982).

    Google Scholar 

  35. P. J. Stiles, J. B. Hubbard, and R. F. Kayser,J. Chem. Phys. 77, 6189 (1982).

    Google Scholar 

  36. F. Booth,J. Chem. Phys. 19, 391 (1951).

    Google Scholar 

  37. L. Onsager,J. Am. Chem. Soc. 58, 1486 (1936).

    Google Scholar 

  38. F. Accasina, A. D'Aprano, and R. M. Fuoss,J. Am. Chem. Soc. 81, 1058 (1951).

    Google Scholar 

  39. H. L. Yeager, J. D. Fedyk, and R. J. Parker,J. Phys. Chem. 77, 2407 (1973).

    Google Scholar 

  40. H. Feng-Chun and W. R. Gilkerson,J. Solution Chem. 12, 161 (1983).

    Google Scholar 

  41. A. K. Covington and T. Dickinson, inPhysical Chem. of Organic Solvent Systems, A. K. Covington and T. Dickinson, eds. (Plenum Press, New York, 1973), Chap. 1.

    Google Scholar 

  42. H. Finegold,J. Phys. Chem. 72, 3244 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonagh, P.M., Reardon, J.F. II. Ionic association and mobility in propylene carbonate. J Solution Chem 19, 301–314 (1990). https://doi.org/10.1007/BF00650460

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650460

Key words

Navigation