Journal of Solution Chemistry

, Volume 4, Issue 4, pp 347–357 | Cite as

Effect of isomeric butanols on the temperature corresponding to the adiabatic compressibility minimum of water

  • S. V. Subrahmanyam
  • N. Manohara Moorthy
Article

Abstract

The effect of isomeric butanols on the temperature corresponding to the adiabatic compressibility minimum of water (Tβ) was studied using a variablepath interferometer working at 3 MHz. The structural contribution to the shift inTβ, [ΔTβstr]exp, was found to be positive and to increase with concentration to a maximum atX2≃0.0193, 0.0100, and 0.0090 fort-butanol, sec-butanol, and isobutanol, respectively. The results have been explained on the basis of stabilization of water structure at low concentrations of alcohol. The quantity [ΔTβstr]exp forn-butanol is practically zero at low concentrations, while at high concentrations it is negative, indicating rupture of the hydrogen-bonded structure of water by this solute. At any given concentration,t-butanol > sec-butanol > isobutanol >n-butanol is the order of increasing structural contribution to the shift inTβ. Theoretical values of the structural contribution to the shift inTβ are in good agreement with the experimental data.

Key words

Adiabatic compressibility isomeric butanols hydrogenbonded structure water aqueous solutions excess adiabatic compressibility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. K. Baumgartner and G. J. Atkinson,J. Phys. Chem. 75, 2336 (1971).Google Scholar
  2. 2.
    C. Burton,J. Acoust. Soc. Am. 20 186 (1948).Google Scholar
  3. 3.
    K. Arrakwa and N. Takenaka,Bull. Chem. Soc. Japan 45, 5 (1969).Google Scholar
  4. 4.
    R. K. Mohanty, T. S. Sharma, S. Subramanian, and J. C. Ahluwalia,Trans. Faraday Soc. 67, 305 (1971).Google Scholar
  5. 5.
    F. Franks and B. Watson,Trans. Faraday Soc. 63, 329 (1967).Google Scholar
  6. 6.
    F. Franks and D. J. G. Ives,Q. Rev. 20, 1 (1966).Google Scholar
  7. 7.
    J. D. Bernal and R. M. Fowler,J. Chem. Phys. 1, 515 (1933).Google Scholar
  8. 8.
    H. S. Frank and W. Y. Wen,Disc. Faraday Soc. 24, 233 (1957).Google Scholar
  9. 9.
    H. S. Frank and W. Y. Wen,Proc. Roy. Soc. (London) 247A, 481 (1958).Google Scholar
  10. 10.
    G. Nemethy and H. A. Scheraga,J. Chem. Phys. 36, 3382, 3401 (1962).Google Scholar
  11. 11.
    C. M. Davis and T. A. Litovitz,J. Chem. Phys. 42, 2563 (1965).Google Scholar
  12. 12.
    J. Mushik, J. Grosh, T. Ree, and H. Eyring,J. Chem. Phys. 44, 1465 (1966).Google Scholar
  13. 13.
    G. Wada and S. Umeda,Bull. Chem. Soc. Japan 35, 646 (1962).Google Scholar
  14. 14.
    A. Weissberger,Physical Methods of Organic Chemistry (Interscience Publishing Co., Inc., New York, 1955), 2nd ed., Vol. 7.Google Scholar
  15. 15.
    S. V. Subrahmanyam, V. Hyder Khan, and C. V. Raghavan,J. Acoust. Soc. Am. 46, 272 (1969).Google Scholar
  16. 16.
    M. J. Blandamer, D. E. Clarke, N. J. Hidden, and M. C. R. Symons,Trans. Faraday Soc. 64, 2691 (1968).Google Scholar
  17. 17.
    M. Greenspan and C. E. Tschiegg, J. Res. Nat. Bur. Std.59, 249 (1957).Google Scholar
  18. 18.
    International Critical Tables of Numerical Data. Physics, Chemistry, and Technology, Vol. 3, E. W. Washburn, ed., (McGraw-Hill Book Co., Inc., New York, 1928).Google Scholar
  19. 19.
    F. Franks and M. J. Quickendon,Chem. Commun.,388, (1968).Google Scholar
  20. 20.
    D. N. Glew, H. D. Mak, and N. S. Rath,Chem. Commun.,264 (1968).Google Scholar
  21. 21.
    M. J. Blandamer, D. E. Clarke, N. J. Hidden, and M. C. R. Symons,Chem. Commun., 342 (1966).Google Scholar
  22. 22.
    F. Franks and H. T. Smith,Trans. Faraday Soc. 64, 2962 (1968).Google Scholar

Copyright information

© Plenum Publishing Corporation 1975

Authors and Affiliations

  • S. V. Subrahmanyam
    • 1
  • N. Manohara Moorthy
    • 1
  1. 1.Department of PhysicsS.V.U. Post-Graduate CentreAnantapurIndia

Personalised recommendations