Skip to main content
Log in

The association of aromatic anions in water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Molar conductances of dilute solutions of sodium 2-naphthalenesulfonate at 25°C and of sodium 2-anthraquinonesulfonate have been measured at 25 and 37°C. These data are interpreted to show that the anthraquinonesulfonate anion is dimerized in solution. Dimerization constants and the enthalpy and entropy of dimerization are calculated. Spectrophotometric absorbancies have been measured at 25, 30, 35 and 40°C for a series of aqueous solutions containing both sodium 4-dimethylaminobenzenesulfonate and sodium 3-nitrobenzenesulfonate. Equilibrium constants and enthalpy and entropy changes for formation of the 1 ∶ 1 complex between these two ions have been calculated from these data. The formation of these complexes between like-charged ions, and of dimers of other aromatic solutes in water is discussed in terms of a two-state model of hydrophobic hydration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. Frank and M. W. Evans,J. Chem. Phys. 13, 507 (1945).

    Google Scholar 

  2. D. G. Duff and C. H. Giles, inWater, A Comprehensive Treatise, F. Franks, ed., Vol.4, (Plenum Press, New York, 1975) Ch. 3.

    Google Scholar 

  3. G. C. Kresheck, inWater, A Comprehensive Treatise, F. Franks, ed., Vol.4, (Plenum Press, New York, 1975) Ch.4.

    Google Scholar 

  4. K. L. Kendrick and W. R. Gilkerson,J. Solution Chem. 16, 257 (1987).

    Google Scholar 

  5. K. Shinoda,J. Phys. Chem. 81, 1300 (1977).

    Google Scholar 

  6. S. W. Benson,J. Am. Chem. Soc. 100, 5640 (1978).

    Google Scholar 

  7. D. F. Evans and P. J. Wightman,J. Colloid and Interface Sci. 86, 515 (1982).

    Google Scholar 

  8. S. J. Gill and S. F. Dec,J. Phys. Chem. 89, 3758 (1985).

    Google Scholar 

  9. E. Grunwald,J. Am. Chem. Soc. 108, 5719 (1986); b)ibid. 5726 (1986).

    Google Scholar 

  10. O. D. Bonner and O. C. Rogers,J. Phys. Chem. 64, 1499 (1960).

    Google Scholar 

  11. O. D. Bonner, C. Rushing, and A. L. Rorres,J. Phys. Chem. 72, 4290 (1968).

    Google Scholar 

  12. Brian Saville, personal communication.

  13. M. D. Jackson and W. R. Gilkerson,J. Am. Chem. Soc. 101, 328 (1979).

    Google Scholar 

  14. H. S. Harned and B. B. Owen, inThe Physical Chemistry of Electrolytic Solutions, 3rd edn., (Reinhold, New York, 1958), p. 197.

    Google Scholar 

  15. W. H. Lee and R. H. Wheaton,J. Chem. Soc. Faraday II 74, 743, 1456 (1978);75, 1128 (1979).

    Google Scholar 

  16. R. M. Fuoss,J. Phys. Chem. 82, 2427 (1978).

    Google Scholar 

  17. P. Mukerjee, K. J. Mysels, and C. I. Dulin,J. Phys. Chem. 62, 1390 (1958).

    Google Scholar 

  18. K. L. Kendrick and W. R. Gilkerson,J. Solution Chem. 16, Ref. 4, p. 284 (1987).

    Google Scholar 

  19. A. D. Pethybridge and S. S. Taba,J. Chem. Soc. Faraday I 76, 368 (1980).

    Google Scholar 

  20. A. D. Pethybridge,Z. Phys. Chem. (Wiesbaden) 133, 143 (1982).

    Google Scholar 

  21. K. L. Kendrick and W. R. Gilkerson,J. Solution Chem. 16, Ref. 4, p. 233 (1987).

    Google Scholar 

  22. L. G. Hepler,Thermochimica Acta 50, 69 (1981).

    Google Scholar 

  23. W. P. Jencks, inCatalysis in Chemistry and Enzymology (McGraw-Hill, New York, 1969) Ch. 9.

    Google Scholar 

  24. L. J. Andrews and R. M. Keefer, inMolecular Complexes in Organic Chemistry (Holden-Day, San Francisco, 1964).

    Google Scholar 

  25. E. H. Braswell,J. Phys. Chem. 88, 3653 (1984).

    Google Scholar 

  26. W. P. Jencks, inCatalysis in Chemistry and Enzymology (McGraw-Hill, New York, 1969), Ref. 23, p. 25.

    Google Scholar 

  27. L. E. Orgel and R. S. Mulliken,J. Am. Chem. Soc. 79, 4839 (1957).

    Google Scholar 

  28. H. A. Benesi and J. H. Hildebrand,J. Am. Chem. Soc. 71, 2703 (1949).

    Google Scholar 

  29. E. E. Tucker, E. H. Lane, and S. D. Christian,J. Solution Chem. 10, 1 (1981).

    Google Scholar 

  30. P. Bernal, 5. D. Christian, and E. E. Tucker,J. Solution Chem. 15, 947 (1986).

    Google Scholar 

  31. L. E. Strong, C. L. Brummel, R. Ryther, J. R. Radford, and A. D. Pethybridge,J. Solution Chem. 17, 1145 (1988).

    Google Scholar 

  32. A. R. Monahan and D. F. Blossey,J. Phys. Chem. 74, 4014 (1970).

    Google Scholar 

  33. P. O. P. Ts'o, inBasic Principles in Nucleic Acid Chemistry, Vol. 1 (Academic Press, New York, 1974), p. 547.

    Google Scholar 

  34. R. Lumry and H. S. Frank,Proc. Sixth International Biophysics Congress, VII-30-(554), 1978.

  35. P. G. N. Mosely and M. Spiro,J. Solution Chem. 1, 39 (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gilkerson, W.R., Mixon, A.L. The association of aromatic anions in water. J Solution Chem 19, 491–505 (1990). https://doi.org/10.1007/BF00650382

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00650382

Key words

Navigation