Astrophysics and Space Science

, Volume 90, Issue 2, pp 337–350 | Cite as

Effect of the Coriolis force and slowly varying flow on the Kelvin-Helmholtz instability

  • D. N. Vyas
  • R. Singh
  • Krishna M. Srivastava


The effect of the Coriolis force on the Kelvin-Helmholtz instability has been investigated, in which basic velocities of fluid are varying slowly with lateral coordinatey. The problem is solved by J.W.K.B. approximation method. Parabolic and other types of profiles for wide long channel flow have also been studied in detail.


Approximation Method Channel Flow Coriolis Force Basic Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axford, W. I.: 1960,Quart. J. Mech. Appl. Math 23, 344.Google Scholar
  2. Barcilon, A. and Drazin, P. G.: 1972,Geophys. Fluid Dyn. 4, 147.Google Scholar
  3. Blumen, W.: 1973,Tellus 25, 12.Google Scholar
  4. Bouttier, M.: 1972,Mech. 11, 599.Google Scholar
  5. Chandrasekhar, S.: 1961,Hydrodynamic and Hydromagnetic Stability, Oxford Univ. Press, New York.Google Scholar
  6. Drazin, P. G.: 1974,J. Fluid Mech. 65, 781.Google Scholar
  7. Froman, N. and Froman, P. O.: 1965,JWKB Approx., North-Holland, Amsterdam, Holland.Google Scholar
  8. Howard, L. N.: 1961,J. Fluid Mech. 10, 509.Google Scholar
  9. Jeffreys, H.: 1962,Asymptotic Approximations, Oxford Univ. Press.Google Scholar
  10. Longuet-Higgins, M. S. and Stewart, R. W.: 1961,J. Fluid Mech. 10, 529.Google Scholar
  11. Michal, D. H.: 1955,Proc. Cambridge Phil. Soc. 51, 528.Google Scholar

Copyright information

© D. Reidel Publishing Co. 1983

Authors and Affiliations

  • D. N. Vyas
    • 1
  • R. Singh
    • 1
  • Krishna M. Srivastava
    • 1
  1. 1.Department of MathematicsUniversity of RoorkeeRoorkeeIndia

Personalised recommendations