Astrophysics and Space Science

, Volume 111, Issue 2, pp 253–263 | Cite as

Spherical shock waves in viscous magnetogasdynamics

  • B. G. Verma
  • R. C. Srivastava
  • V. K. Singh


The point-source, spherical magnetogasdynamics shock wave moving into a constant density γ-law gas is considered in the limit of infinite shock strength, from the point of view of the Richtmyer-Von Neumann viscosity technique. Numerical solutions of this problem has been obtained in viscous and non-viscous regions. A similarity solution of this problem is shown to exist. We have shown that field variables change rapidly when the magnetic field is imposed in both the viscous and the non-viscous regions.


Viscosity Magnetic Field Shock Wave Field Variable Similarity Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brode, H. L.: 1954, Rand Corporation Report to the Atomic Energy Commission, p. 571.Google Scholar
  2. Christy, R. F.: 1964,Rev. Mod. Phys. 36, 555.Google Scholar
  3. Colgate, S. A. and Johnson, M. H.: 1960,Phys. Rev. Letters 5, 235.Google Scholar
  4. Latter: 1955,Journal of Applied Physics 26(8), 954.Google Scholar
  5. Lax, P. D.: 1954,Comm. Pure Applied Math. 7, 159.Google Scholar
  6. Richtmyer, R. D. and Von Neumann, J.: 1950,J. Appl. Phys. 21, 232.Google Scholar
  7. Sachdev, P. L. and Prasal Phoolan: 1966,J. Phys. Soc. Japan 21, 12.Google Scholar
  8. Summers, D.: 1975,Astron. Astrophys. 45, 151.Google Scholar
  9. Taylor: 1950,Proc. Roy. Soc. (London) A201, 159.Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • B. G. Verma
    • 1
  • R. C. Srivastava
    • 1
  • V. K. Singh
    • 1
  1. 1.Department of MathematicsUniversity of GorakhpurIndia

Personalised recommendations