Skip to main content
Log in

Effect of self-gravitation or finite ion mass on the stability of anisotropic plasma

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The problem of stability of an unbounded anisotropic plasma characterized by different temperatures along and transverse to the magnetic field is investigated for an arbitrary direction of propagation. Chewet al (1956) equations modified to incorporate self-gravitation, finite ion Larmor radius (FLR) and Hall current are used. Uniform rotation (of an order of interest in astrophysics) is also considered. Extensive numerical treatment of the dispersion relation leads to several interesting results.

Inclusion of FLR, or Hall current or both together introduces pulsational instability for prepagation parallel to the magnetic field. The aperiodic growth rate of the ‘mirror’ instability is only slightly altered due to FLR or Hall current effects. In the absence of rotation, self-gravitation, FLR and Hall current, the growth rate decreases for the ‘mirror’ region as the direction of propagation approaches the field direction, while the ‘fire hose’ instability persists for arbitrary propagation, even in the limiting case (the ‘mirror’ limit) where the propagation is nearly transverse to the magnetic field. Uniform rotation altogether stabilizes the ‘fire hose’ instability for a sufficiently strong pressure (or temperature) anisotropy. Pulsational instability is introduced when both ratation and self-gravitation effects are present. Either FLR or Hall current depresses the growth rate of the ‘fire hose’ instability and introduces pulsational instability for the general case of arbitrary propagation. When FLR and Hall current effects are present simultaneously, the interaction terms due to these effects may be strongly destabilizing in nature for arbitrary propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bernstein, B. and Trehan, S. K.: 1960,Nucl. Fusion. 1, 3.

    Google Scholar 

  • Bhatia, P. K.: 1969,Nuovo Cimento,59B, 229.

    Google Scholar 

  • Burgers, J. M.: 1960,Rev. Mod. Phys. 32, 868.

    Google Scholar 

  • Chew, G. F., Goldberger, M. and Low, F.: 1956,Proc. Roy. Soc. A 236, 112.

    Google Scholar 

  • Frieman, E., Davidson, R., and Langdon, B.: 1966,Phys. Fluids 9, 1475.

    Google Scholar 

  • Hans, H. K.: 1966,Ann. Astrophys. 29, 339.

    Google Scholar 

  • Herdan, R. and Liley, B.: 1960,Rev. Mod. Phys. 32, 610.

    Google Scholar 

  • Jaggi, R. K.: 1962,Phys. Fluids 5, 949.

    Google Scholar 

  • Jeans, J. H.: 1929, inAstronomy and Cosmology Cambridge University Press, p. 313.

  • Kalra, G. L.: 1966,Publ. Astron. Soc. Japan 18 466.

    Google Scholar 

  • Kalra, G. L.: 1969,Publ. Astron. Soc. Japan 21, 263.

    Google Scholar 

  • Kalra, G. L. and Talwar, S. P.: 1970,Can. J. Phys. 48, 29.

    Google Scholar 

  • Kennel, C. F. and Scarf, F. L.: 1968,J. Geophys. Res. 73, 6149.

    Google Scholar 

  • Lüst, R.: 1959, Riso Report No. 18, Danish Atomic Energy Commission, Denmark.

    Google Scholar 

  • Macmahon, A.: 1965,Phys. Fluids 8, 1840.

    Google Scholar 

  • Malik, S. K. and Trehan, S. K.: 1967,Nuovo Cimento 52A, 1171.

    Google Scholar 

  • Marochnik, L. S.: 1957,Soviet Astron.-AJ 10, 738.

    Google Scholar 

  • Noerdlinger, P. D. and Ko-Min Yui, A.: 1969,Astrophys. J. 157, 1147.

    Google Scholar 

  • Ogasawara, M.: 1969,J. Phys. Soc. Japan 26, 820.

    Google Scholar 

  • Parker, E. N.: 1958,Phys. Rev. 109, 1874.

    Google Scholar 

  • Post, R. F. and Perkins, W. A.: 1961,Phys. Rev. Letters 6, 85.

    Google Scholar 

  • Sharma, S. R.: 1968,J. Phys. A. (Proc. Phys. Soc.) 1, 367.

    Google Scholar 

  • Singh, S. and Hans, H.: 1965,Z. Astrophys. 62, 12.

    Google Scholar 

  • Tandon, J. N. and Talwar, S. P.: 1963,Nucl. Fusion,3, 75.

    Google Scholar 

  • Tang, J. Y. T. and Seebass, R.: 1969,Phys. Fluids 12, 381.

    Google Scholar 

  • Thompson, W. B.: 1961,Rept. Progr. Phys. 24, 363.

    Google Scholar 

  • Thompson, W. B.: 1962, inAn Introduction to Plasma Physics, Pergamon Press, p. 225.

  • Yajima, N.: 1966,Progr. Theoret. Phys. 36, 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalra, G.L., Hosking, R.J. & Talwar, S.P. Effect of self-gravitation or finite ion mass on the stability of anisotropic plasma. Astrophys Space Sci 9, 34–79 (1970). https://doi.org/10.1007/BF00649953

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00649953

Keywords

Navigation