Skip to main content
Log in

Excess enthalpies and apparent molar volumes of some N-methyl substituted amino acids in aqueous solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The excess enthalpies and limiting partial molar volumes at 25°C for aqueous solutions of N-methyl glycine, N-methyl alanine, and N-methyl serine are reported and compared with the same properties for the parent amino acids. For each N-methyl derivative the enthalpic contribution to the pairwise interaction is less favorable than that for the parent amino acid. The contribution of the N-methyl substituent to V 02 is similar for each amino acid, and is about 2 cm3-mol−1 greater than for a methyl substituent on the α-carbon. These observations have been rationalized in terms of the likely solute-solvent interactions. In addition a rigid particle model is used with the volume data to examine solute-solvent interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Némethy, W. J. Peer, and H. A. Scheraga,Ann. Rev. Biophys. Bioeng. 10 459 (1981).

    Google Scholar 

  2. P. Kollman, inThe Chemistry of Enzyme Action, M. I. Page, ed., (Elsevier, New York, 1984), Chap. 2.

    Google Scholar 

  3. F. Franks, inBiochemical Thermodynamics, M. N. Jones, ed., (Elsevier, New York, 1979), Chap. 2.

    Google Scholar 

  4. A. A. Zamyatnin,Ann. Rev. Biophys. Bioeng. 13 145 (1984).

    Google Scholar 

  5. T. H. Lilley, inThe Chemistry and Biochemistry of the Amino Acids, G. C. Barrett, ed., (Chapman and Hall, London, 1985), Chap. 21.

    Google Scholar 

  6. H. Høiland, inThermodynamic Data for Biochemistry and Biotechnology, H.-J. Hinz, ed., (Springer-Verlag, Berlin, 1986), Chap. 2.

    Google Scholar 

  7. C. Jolicoeur, B. Riedl, D. Desrochers, L. L. Lemelin, R. Zamojska, and O. Enea,J. Solution Chem. 15, 109 (1986).

    Google Scholar 

  8. R. S. Humphrey, G. R. Hedwig, I. D. Watson, and G. N. Malcolm,J. Chem. Thermodyn. 12, 595 (1980).

    Google Scholar 

  9. H. Høiland, Chap. 4, Ref. 6.

  10. T. F. Wegrzyn, I. D. Watson, and G. R. Hedwig,J. Solution Chem. 13, 233 (1984).

    Google Scholar 

  11. A. I. Vogel,Quantitative Inorganic Analysis, 3rd ed., (Longmans, London, 1961), Chap. 16.

    Google Scholar 

  12. S. H. Dyke, G. R. Hedwig, and I. D. Watson,J. Solution Chem. 10, 321 (1981).

    Google Scholar 

  13. G. R. Hedwig,J. Solution Chem. 17, 383 (1988).

    Google Scholar 

  14. J. J. Kozak, W. S. Knight, and W. Kauzmann,J. Chem. Phys. 48, 675 (1968).

    Google Scholar 

  15. W. G. McMillan and J. E. Mayer,J. Chem. Phys. 13, 276 (1945).

    Google Scholar 

  16. J. E. Desnoyers, G. Perron, L. Avédikian, and J.-P. Morel,J. Solution Chem. 5, 631 (1976).

    Google Scholar 

  17. G. Barone, G. Castronuovo, V. Crescenzi, V. Elia, and E. Rizzo,J. Solution Chem. 7, 179 (1978).

    Google Scholar 

  18. M. K. Kumaran, I. D. Watson, and G. R. Hedwig,Aust. J. Chem. 36, 1813 (1983).

    Google Scholar 

  19. G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).

    Google Scholar 

  20. F. Shahidi and P. G. Farrell,J. Chem. Soc. Faraday I 74, 1268 (1978).

    Google Scholar 

  21. H. J. V. Tyrrell and M. Kennerley,J. Chem. Soc. A, 2724 (1968).

    Google Scholar 

  22. C. Jolicoeur and J. Boileau,Can. J. Chem. 56, 2707 (1978).

    Google Scholar 

  23. F. Shahidi,J. Solution Chem. 12, 295 (1983).

    Google Scholar 

  24. S. Cabani, V. Mollico, L. Lepori, and S. T. Lobo,J. Phys. Chem. 81, 987 (1977).

    Google Scholar 

  25. R. Zana,J. Phys. Chem. 81, 1817 (1977).

    Google Scholar 

  26. T. M. Herrington and E. L. Mole,J. Chem. Soc. Faraday I 78, 213 (1982).

    Google Scholar 

  27. J. E. Garrod and T. M. Herrington,J. Phys. Chem. 73, 1877 (1969).

    Google Scholar 

  28. B. Lee and F. M. Richards,J. Mol. Biol. 55, 379 (1971).

    Google Scholar 

  29. A. Ben-Naim,Water and Aqueous Solutions (Plenum Press, New York, 1974), p. 226.

    Google Scholar 

  30. A. Isihara,J. Chem. Phys. 18, 1446 (1950).

    Google Scholar 

  31. M. S. Lehman, T. F. Koetzle, and W. C. Hamilton,J. Am. Chem. Soc. 94, 2657 (1972).

    Google Scholar 

  32. T. J. Kistenmacher, G. A. Rand, and R. E. Marsh,Acta Cryst. B30, 2573 (1974).

    Google Scholar 

  33. L. F. Power and K. E. Turner,Acta Cryst. B32, 11 (1976).

    Google Scholar 

  34. See for example: E. J. Cohn and J. T. Edsall,Proteins, Amino Acids and Peptides (Hafner, New York, 1943); M. W. Aaron and E. H. Grant,Trans. Faraday Soc. 63, 2177 (1967); G. Khanarian and W. J. Moore,Aust. J. Chem. 33, 1722 (1980).

    Google Scholar 

  35. L. R. Wright and R. F. Borkman,J. Am. Chem. Soc. 102, 6207 (1980).

    Google Scholar 

  36. J. Kirchnerova, P. G. Farrell, and J. T. Edward,J. Phys. Chem. 80, 1974 (1976).

    Google Scholar 

  37. F. Franks, M. Pedley, and D. S. Reid,J. Chem. Soc. Faraday I 72, 359 (1976).

    Google Scholar 

  38. G. M. Blackburn, T. H. Lilley, and E. Walmsley,J. Chem. Soc. Faraday I 78, 1641 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reading, J.F., Carlisle, P.A., Hedwig, G.R. et al. Excess enthalpies and apparent molar volumes of some N-methyl substituted amino acids in aqueous solutions. J Solution Chem 18, 131–142 (1989). https://doi.org/10.1007/BF00649569

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00649569

Key words

Navigation