Advertisement

Journal of Solution Chemistry

, Volume 18, Issue 2, pp 131–142 | Cite as

Excess enthalpies and apparent molar volumes of some N-methyl substituted amino acids in aqueous solutions

  • J. F. Reading
  • P. A. Carlisle
  • G. R. Hedwig
  • I. D. Watson
Article

Abstract

The excess enthalpies and limiting partial molar volumes at 25°C for aqueous solutions of N-methyl glycine, N-methyl alanine, and N-methyl serine are reported and compared with the same properties for the parent amino acids. For each N-methyl derivative the enthalpic contribution to the pairwise interaction is less favorable than that for the parent amino acid. The contribution of the N-methyl substituent to V 2 0 is similar for each amino acid, and is about 2 cm3-mol−1 greater than for a methyl substituent on the α-carbon. These observations have been rationalized in terms of the likely solute-solvent interactions. In addition a rigid particle model is used with the volume data to examine solute-solvent interactions.

Key words

Enthalpies of dilution density partial molar volume N-methyl amino acid aqueous solution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Némethy, W. J. Peer, and H. A. Scheraga,Ann. Rev. Biophys. Bioeng. 10 459 (1981).Google Scholar
  2. 2.
    P. Kollman, inThe Chemistry of Enzyme Action, M. I. Page, ed., (Elsevier, New York, 1984), Chap. 2.Google Scholar
  3. 3.
    F. Franks, inBiochemical Thermodynamics, M. N. Jones, ed., (Elsevier, New York, 1979), Chap. 2.Google Scholar
  4. 4.
    A. A. Zamyatnin,Ann. Rev. Biophys. Bioeng. 13 145 (1984).Google Scholar
  5. 5.
    T. H. Lilley, inThe Chemistry and Biochemistry of the Amino Acids, G. C. Barrett, ed., (Chapman and Hall, London, 1985), Chap. 21.Google Scholar
  6. 6.
    H. Høiland, inThermodynamic Data for Biochemistry and Biotechnology, H.-J. Hinz, ed., (Springer-Verlag, Berlin, 1986), Chap. 2.Google Scholar
  7. 7.
    C. Jolicoeur, B. Riedl, D. Desrochers, L. L. Lemelin, R. Zamojska, and O. Enea,J. Solution Chem. 15, 109 (1986).Google Scholar
  8. 8.
    R. S. Humphrey, G. R. Hedwig, I. D. Watson, and G. N. Malcolm,J. Chem. Thermodyn. 12, 595 (1980).Google Scholar
  9. 9.
    H. Høiland, Chap. 4, Ref. 6.Google Scholar
  10. 10.
    T. F. Wegrzyn, I. D. Watson, and G. R. Hedwig,J. Solution Chem. 13, 233 (1984).Google Scholar
  11. 11.
    A. I. Vogel,Quantitative Inorganic Analysis, 3rd ed., (Longmans, London, 1961), Chap. 16.Google Scholar
  12. 12.
    S. H. Dyke, G. R. Hedwig, and I. D. Watson,J. Solution Chem. 10, 321 (1981).Google Scholar
  13. 13.
    G. R. Hedwig,J. Solution Chem. 17, 383 (1988).Google Scholar
  14. 14.
    J. J. Kozak, W. S. Knight, and W. Kauzmann,J. Chem. Phys. 48, 675 (1968).Google Scholar
  15. 15.
    W. G. McMillan and J. E. Mayer,J. Chem. Phys. 13, 276 (1945).Google Scholar
  16. 16.
    J. E. Desnoyers, G. Perron, L. Avédikian, and J.-P. Morel,J. Solution Chem. 5, 631 (1976).Google Scholar
  17. 17.
    G. Barone, G. Castronuovo, V. Crescenzi, V. Elia, and E. Rizzo,J. Solution Chem. 7, 179 (1978).Google Scholar
  18. 18.
    M. K. Kumaran, I. D. Watson, and G. R. Hedwig,Aust. J. Chem. 36, 1813 (1983).Google Scholar
  19. 19.
    G. S. Kell,J. Chem. Eng. Data 12, 66 (1967).Google Scholar
  20. 20.
    F. Shahidi and P. G. Farrell,J. Chem. Soc. Faraday I 74, 1268 (1978).Google Scholar
  21. 21.
    H. J. V. Tyrrell and M. Kennerley,J. Chem. Soc. A, 2724 (1968).Google Scholar
  22. 22.
    C. Jolicoeur and J. Boileau,Can. J. Chem. 56, 2707 (1978).Google Scholar
  23. 23.
    F. Shahidi,J. Solution Chem. 12, 295 (1983).Google Scholar
  24. 24.
    S. Cabani, V. Mollico, L. Lepori, and S. T. Lobo,J. Phys. Chem. 81, 987 (1977).Google Scholar
  25. 25.
    R. Zana,J. Phys. Chem. 81, 1817 (1977).Google Scholar
  26. 26.
    T. M. Herrington and E. L. Mole,J. Chem. Soc. Faraday I 78, 213 (1982).Google Scholar
  27. 27.
    J. E. Garrod and T. M. Herrington,J. Phys. Chem. 73, 1877 (1969).Google Scholar
  28. 28.
    B. Lee and F. M. Richards,J. Mol. Biol. 55, 379 (1971).Google Scholar
  29. 29.
    A. Ben-Naim,Water and Aqueous Solutions (Plenum Press, New York, 1974), p. 226.Google Scholar
  30. 30.
    A. Isihara,J. Chem. Phys. 18, 1446 (1950).Google Scholar
  31. 31.
    M. S. Lehman, T. F. Koetzle, and W. C. Hamilton,J. Am. Chem. Soc. 94, 2657 (1972).Google Scholar
  32. 32.
    T. J. Kistenmacher, G. A. Rand, and R. E. Marsh,Acta Cryst. B30, 2573 (1974).Google Scholar
  33. 33.
    L. F. Power and K. E. Turner,Acta Cryst. B32, 11 (1976).Google Scholar
  34. 34.
    See for example: E. J. Cohn and J. T. Edsall,Proteins, Amino Acids and Peptides (Hafner, New York, 1943); M. W. Aaron and E. H. Grant,Trans. Faraday Soc. 63, 2177 (1967); G. Khanarian and W. J. Moore,Aust. J. Chem. 33, 1722 (1980).Google Scholar
  35. 35.
    L. R. Wright and R. F. Borkman,J. Am. Chem. Soc. 102, 6207 (1980).Google Scholar
  36. 36.
    J. Kirchnerova, P. G. Farrell, and J. T. Edward,J. Phys. Chem. 80, 1974 (1976).Google Scholar
  37. 37.
    F. Franks, M. Pedley, and D. S. Reid,J. Chem. Soc. Faraday I 72, 359 (1976).Google Scholar
  38. 38.
    G. M. Blackburn, T. H. Lilley, and E. Walmsley,J. Chem. Soc. Faraday I 78, 1641 (1982).Google Scholar

Copyright information

© Plenum Publishing Corporation 1989

Authors and Affiliations

  • J. F. Reading
    • 1
  • P. A. Carlisle
    • 1
  • G. R. Hedwig
    • 1
  • I. D. Watson
    • 1
  1. 1.Department of Chemistry and BiochemistryMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations