Skip to main content
Log in

Partial molar volumes of molecules of arbitrary shape and the effect of hydrogen bonding with water

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The paper presents a critical review of approaches for the description of partial molar volumes of aqueous solutions and offers a new procedure for calculation of these volumes which allows one to analyze organic molecules of arbitrary shape. Quantitative analysis of the volume effect of hydrogen bonding of different polar groups with water is given. The model is based on the assumption that thermal (or empty) volume may be cosidered geometrically as a layer of empty space adjacent to the molecule surface with the thickness of the layer being independent of local differences in surface curvature. The assumption makes it possible to describe partial volumes of molecules of arbitrary shape within the framework of a unitary approach. The estimation of the volume effects resulting from the interaction of polar groups with water was made by comparing the experimental partial molar volume of a polar molecule with the calculated partial molar volume of a hypothetical reference nonpolar molecule of the same shape. The volume effect of formation of one hydrogen bond in solution was found to be −2.2 cm2-mol. Using this value the stoichiometry of hydration of polar groups was analyzed. As a result, the −O−, −CO− (in ketones) and ≥N groups were found to form one hydrogen bond with water (in ethers, this bond is weak). The −OH (in most cases), −CHO (in aldehydes), and >NH groups form two hydrogen bonds with water. The amino group −NH2 forms three hydrogen bonds with water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Traube,Samml. Chem. Chemischtechn. Vorträge 4, 7 (1899).

    Google Scholar 

  2. S. Terasawa, H. Itsuki, and S. Arakawa,J. Phys. Chem. 79, 2345 (1975).

    Google Scholar 

  3. J. T. Edward and P. G. Farrell,Can. J. Chem. 53, 2965 (1975).

    Google Scholar 

  4. J. T. Edward, P. G. Farrell, and F. Shahidi,J. Chem. Soc. Faraday Trans. I 73, 705 (1977).

    Google Scholar 

  5. E. J. Cohn and J. T. Edsall,Proteins, Amino Acids and Peptides (Reinhold, New York, 1943);

    Google Scholar 

  6. A. A. Zamyatnin,Ann. Rev. Biophys. Bioeng. 13, 145 (1984).

    Google Scholar 

  7. B. Lee,J. Phys. Chem. 87, 112 (1983).

    Google Scholar 

  8. S. J. Perkins,Eur. J. Biochem. 157, 169 (1986).

    Google Scholar 

  9. H. Reiss,Adv. Chem. Phys. 9, 1 (1965).

    Google Scholar 

  10. P. L. Pierotti,J. Phys. Chem. 69, 281 (1965).

    Google Scholar 

  11. F. H. Stillinger,J. Solution Chem. 2, 141 (1973).

    Google Scholar 

  12. S. Cabani, P. Gianni, V. Mollica, and L. Lepori,J. Solution Chem. 10, 563 (1981).

    Google Scholar 

  13. A. Bondi,J. Phys. Chem. 68, 441 (1964);

    Google Scholar 

  14. A. Bondi,Molecular Crystals, Liquids and Glasses, (Wiley, New York, 1968).

    Google Scholar 

  15. F. Shahidi, P. G. Farrell, and J. T. Edward,J. Chem. Soc. Faraday Trans. I 73, 715 (1977);

    Google Scholar 

  16. F. Shahidi and P. G. Farrell,J. Chem. Soc. Faraday Trans. I 74, 858 (1978).

    Google Scholar 

  17. E. Glueckauf,Trans. Faraday Soc. 65, 914 (1965).

    Google Scholar 

  18. D. P. Kharakoz,Biophys. Chem. 34, 115 (1989).

    Google Scholar 

  19. F. Hirata and K. Arakawa,Bull. Chem. Soc. Jpn. 46, 3367 (1973).

    Google Scholar 

  20. G. S. Kell,J. Chem. Eng. Data 20, 97 (1962).

    Google Scholar 

  21. O. Kiselev, Ph.D Thesis, Kazan State University, (Kazan, 1987).

  22. J. T. Edward,J. Chem. Educ. 47, 261 (1970).

    Google Scholar 

  23. H. Høiland, inThermodynamic Data for Biochemistry and Biotechnology, H-J. Hinz, ed., (Spring-Verlag, New York, 1986) Chap. 2.

    Google Scholar 

  24. B. Z. Gorbunov and Yu. I. Naberukhin,Zhurn. Strukt. Khim. (Moscow) 16, 703 (1975)

    Google Scholar 

  25. G. N. Zatsepina,Physical Properties and Structure of Water (Isdat. Moskow University, Moscow, 1987).

    Google Scholar 

  26. R. Zana,J. Phys. Chem. 81, 1817 (1977).

    Google Scholar 

  27. F. Franks, J. R. Ravenhill, and D. S. Reid,J. Solution Chem. 1, 3 (1972);

    Google Scholar 

  28. F. Franks, D. S. Reid, and A. Suggett,J. Solution Chem. 2, 99 (1973).

    Google Scholar 

  29. D. P. Kharakoz,J. Phys. Chem. (in press).

  30. A. P. Sarvazn, D. P. Kharakoz, and P. Hemmes,J. Phys. Chem. 83, 1796 (1979);

    Google Scholar 

  31. V. A. Buckin, A. P. Sarvazyan, and D. P. Kharakoz, inWater in Disperse Systems, B. V. Deryagin, N. V. Churaev, and F. D. Ovcharenko, eds., (Moscow, Khimiya, 1989).

    Google Scholar 

  32. W. W. Paudler and T. K. Chan,J. Heterocyclic Chem. 7, 767 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharakoz, D.P. Partial molar volumes of molecules of arbitrary shape and the effect of hydrogen bonding with water. J Solution Chem 21, 569–595 (1992). https://doi.org/10.1007/BF00649565

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00649565

Key words

Navigation