Abstract
The paper presents a critical review of approaches for the description of partial molar volumes of aqueous solutions and offers a new procedure for calculation of these volumes which allows one to analyze organic molecules of arbitrary shape. Quantitative analysis of the volume effect of hydrogen bonding of different polar groups with water is given. The model is based on the assumption that thermal (or empty) volume may be cosidered geometrically as a layer of empty space adjacent to the molecule surface with the thickness of the layer being independent of local differences in surface curvature. The assumption makes it possible to describe partial volumes of molecules of arbitrary shape within the framework of a unitary approach. The estimation of the volume effects resulting from the interaction of polar groups with water was made by comparing the experimental partial molar volume of a polar molecule with the calculated partial molar volume of a hypothetical reference nonpolar molecule of the same shape. The volume effect of formation of one hydrogen bond in solution was found to be −2.2 cm2-mol. Using this value the stoichiometry of hydration of polar groups was analyzed. As a result, the −O−, −CO− (in ketones) and ≥N groups were found to form one hydrogen bond with water (in ethers, this bond is weak). The −OH (in most cases), −CHO (in aldehydes), and >NH groups form two hydrogen bonds with water. The amino group −NH2 forms three hydrogen bonds with water.
Similar content being viewed by others
References
J. Traube,Samml. Chem. Chemischtechn. Vorträge 4, 7 (1899).
S. Terasawa, H. Itsuki, and S. Arakawa,J. Phys. Chem. 79, 2345 (1975).
J. T. Edward and P. G. Farrell,Can. J. Chem. 53, 2965 (1975).
J. T. Edward, P. G. Farrell, and F. Shahidi,J. Chem. Soc. Faraday Trans. I 73, 705 (1977).
E. J. Cohn and J. T. Edsall,Proteins, Amino Acids and Peptides (Reinhold, New York, 1943);
A. A. Zamyatnin,Ann. Rev. Biophys. Bioeng. 13, 145 (1984).
B. Lee,J. Phys. Chem. 87, 112 (1983).
S. J. Perkins,Eur. J. Biochem. 157, 169 (1986).
H. Reiss,Adv. Chem. Phys. 9, 1 (1965).
P. L. Pierotti,J. Phys. Chem. 69, 281 (1965).
F. H. Stillinger,J. Solution Chem. 2, 141 (1973).
S. Cabani, P. Gianni, V. Mollica, and L. Lepori,J. Solution Chem. 10, 563 (1981).
A. Bondi,J. Phys. Chem. 68, 441 (1964);
A. Bondi,Molecular Crystals, Liquids and Glasses, (Wiley, New York, 1968).
F. Shahidi, P. G. Farrell, and J. T. Edward,J. Chem. Soc. Faraday Trans. I 73, 715 (1977);
F. Shahidi and P. G. Farrell,J. Chem. Soc. Faraday Trans. I 74, 858 (1978).
E. Glueckauf,Trans. Faraday Soc. 65, 914 (1965).
D. P. Kharakoz,Biophys. Chem. 34, 115 (1989).
F. Hirata and K. Arakawa,Bull. Chem. Soc. Jpn. 46, 3367 (1973).
G. S. Kell,J. Chem. Eng. Data 20, 97 (1962).
O. Kiselev, Ph.D Thesis, Kazan State University, (Kazan, 1987).
J. T. Edward,J. Chem. Educ. 47, 261 (1970).
H. Høiland, inThermodynamic Data for Biochemistry and Biotechnology, H-J. Hinz, ed., (Spring-Verlag, New York, 1986) Chap. 2.
B. Z. Gorbunov and Yu. I. Naberukhin,Zhurn. Strukt. Khim. (Moscow) 16, 703 (1975)
G. N. Zatsepina,Physical Properties and Structure of Water (Isdat. Moskow University, Moscow, 1987).
R. Zana,J. Phys. Chem. 81, 1817 (1977).
F. Franks, J. R. Ravenhill, and D. S. Reid,J. Solution Chem. 1, 3 (1972);
F. Franks, D. S. Reid, and A. Suggett,J. Solution Chem. 2, 99 (1973).
D. P. Kharakoz,J. Phys. Chem. (in press).
A. P. Sarvazn, D. P. Kharakoz, and P. Hemmes,J. Phys. Chem. 83, 1796 (1979);
V. A. Buckin, A. P. Sarvazyan, and D. P. Kharakoz, inWater in Disperse Systems, B. V. Deryagin, N. V. Churaev, and F. D. Ovcharenko, eds., (Moscow, Khimiya, 1989).
W. W. Paudler and T. K. Chan,J. Heterocyclic Chem. 7, 767 (1970).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Kharakoz, D.P. Partial molar volumes of molecules of arbitrary shape and the effect of hydrogen bonding with water. J Solution Chem 21, 569–595 (1992). https://doi.org/10.1007/BF00649565
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF00649565