Skip to main content
Log in

Aqueous partial molar heat capacities and volumes for NaTcO4 and NaReO4

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A flow microcalorimeter/densimeter system has been commissioned to measure heat capacities and densities of solutions containing radioactive species as a function of temperature. Measurements were made for NaTcO4(aq) at six temperatures (189.15 K to 373.15 K for the heat capacities, 287.43 K to 396.67 K for the densities) over the molality range 0.01 to 0.29 mol-kg−1. Measurements for NaReO4(aq) (NaReO4 is a common nonradioactive analogue for NaTcO4) were made under similar conditions, but for eight temperatures and a more extensive range of molalities, 0.05 to 0.65 mol-kg−1. Heat capacities of NaCl(aq) reference solutions were also measured from 293.15 K to 398.15 K.

The heat capacity and density data are analysed using Pitzer's ioninteraction model. Equations for the apparent molar heat capacities and volumes are reported. Values of the NaReO4(aq) partial molar heat capacities are compared to literature values based on integral heats of solution. The agreement between the two sets of NaReO4 results is good below 330 K, but only fair at the higher temperatures. Values of the partial molar volumes have also been derived. Using literature values and the results of our experiments, it is calculated that the disproportionation of hydrated TcO2(s) to form TcO 4 (aq) and Tc(cr) occurs more readily at high temperatures. The uncertainties introduced by using thermodynamic values for ReO 4 (aq), in the absence of values for TcO 4 (aq), are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. J. Clegg and J. R. Coady,Radioactive Decay Properties of CANDU Fuel. Volume 1: The Natural Uranium Cycle, Atomic Energy of Canada Limited Report AECL-4436/1, 1977.

  2. J. A. Rard,Critical Review of the Chemistry and Thermodynamics of Technetium and some of its Inorganic Compounds and Aqueous Species, Lawrence Livermore National Laboratory Report UCRL-53440, 1983.

  3. K. S. Pitzer,J. Phys. Chem. 77, 268 (1973).

    Google Scholar 

  4. L. F. Silvester and K. S. Pitzer,J. Phys. Chem. 81, 1822 (1977).

    Google Scholar 

  5. J. C. Ahluwalia and J. W. Cobble,J. Amer. Chem. Soc. 86, 5377 (1964).

    Google Scholar 

  6. P. P. S. Saluja, J. C. LeBlanc, and H. B. Hume,Can. J. Chem. 64, 926 (1986).

    Google Scholar 

  7. P. P. S. Saluja and J. C. LeBlanc,J. Chem. Eng. Data 32, 72 (1987).

    Google Scholar 

  8. P. P. S. Saluja, R. J. Lemire, and J. C. LeBlanc,J. Chem. Thermodyn. 24, 181 (1992).

    Google Scholar 

  9. R. H. Busey, R. B. Bevan, Jr., and R. A. gilbert,J. Chem. Thermodyn. 4, 77 (1972).

    Google Scholar 

  10. L. Haar, G. S. Gallagher, and G. S. Kell, 1983.NBS/NRC Steam Tables, (Hemisphere Publishing, Washington, 1983).

    Google Scholar 

  11. J. E. Desnoyers, C. de Visser, G. Perron, and P. Picker,J. Solution Chem. 5, 605 (1976).

    Google Scholar 

  12. D. E. White and R. H. Wood,J. Solution Chem. 11, 223 (1982).

    Google Scholar 

  13. P. S. Z. Rogers and C. J. Duffy,J. Chem. Thermodyn. 21, 595 (1989).

    Google Scholar 

  14. J.-L. Fortier, P.-A. Leduc, and J. E. Desnoyers,J. Solution Chem. 3, 323 (1974).

    Google Scholar 

  15. J. E. Tanner and F. W. Lamb,J. Solution Chem. 7, 303 (1978).

    Google Scholar 

  16. K. S. Pitzer, J. C. Peiper, and R. H. Busey,J. Phys. Chem. Ref. Data 13, 1 (1984).

    Google Scholar 

  17. R. T. Pabalan and K.S. Pitzer,Geochim. Cosmochim. Acta 51, 2429 (1987).

    Google Scholar 

  18. P. S. Z. Rogers and K.S. Pitzer,J. Phys. Chem. Ref. Data 11, 15 (1982).

    Google Scholar 

  19. P. P. S. Saluja, K. S. Pitzer, and R. C. Phutela,Can. J. Chem. 64, 1328 (1986).

    Google Scholar 

  20. R. C. Phutela, K. S. Pitzer, and P. P. S. Saluja,J. Chem. Eng. Data 32, 76 (1987).

    Google Scholar 

  21. D. J. Bradley and K.S. Pitzer,J. Phys. Chem. 83, 1599 (1979).

    Google Scholar 

  22. J. R. Maurey, and J. Wolff,J. Inorg. Nucl. Chem. 25, 312 (1963).

    Google Scholar 

  23. V. Neck and B. Kanellakopulos,Radiochim. Acta 42, 135 (1987).

    Google Scholar 

  24. R. J. Lemire and F. Garisto,The Solubility of U, Np, Pu, Th and Tc in a Geological Disposal Vault for Used Nuclear Fuel, Atomic Energy of Canada Limited Report AECL-10009, 1989.

  25. W. M. Latimer, 1952.Oxidation potentials (Prentice-Hall, Englewood Cliffs, 1952).

    Google Scholar 

  26. G. B. Naumov, B. N. Ryzhenko, and I. L., Khodakovsky, 1971.,Handbook of Thermodynamic Data, (English edn.) translator, G. J. Soleimani; I. Barnes and V. Spelz, eds., Report WRD-74-01, U.S. Geological Survey, Menlo Park, CA, 1974.

    Google Scholar 

  27. C.M.Criss and J.W. Cobble,J. Amer. Chem. Soc. 86, 5385 (1964).

    Google Scholar 

  28. C.M.Criss and J.W. Cobble,J. Amer. Chem. Soc. 86, 5390 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemire, R.J., Saluja, P.P.S. & Campbell, A.B. Aqueous partial molar heat capacities and volumes for NaTcO4 and NaReO4 . J Solution Chem 21, 507–523 (1992). https://doi.org/10.1007/BF00649560

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00649560

Key words

Navigation