Skip to main content
Log in

Hydrophobic nitroxide radicals as probes to investigate the hydrophobic interaction

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The EPR spectrum of 2,2,6,6-tetramethylpiperidine-N-oxide (TEMPO) has been systematically investigated in several solvents and in aqueous solutions of glycerol,t-BuOH, Bu4NBr,n-HexNH3Br,n-OctNH3Br, NaBPh4, and Ph4AsCl. Most of the results have been obtained at 25°C, though the temperature dependence of the linewidths has been examined in water and several organic solvents. Data on the spectrum of ditertiarybutylnitroxide in aqueous solutions of glycerol and Bu4NBr are also presented. The spectrum was simulated to determine WH, the linewidth after allowance for the unresolved proton hyperfine interaction, in each manifold of the triplet due to the nitrogen hyperfine interaction. The linewidth WH is analyzed in terms of the reorientational correlation time Äθ and the angular velocity correlation time ÄJ. In most solutions Äθ is determined only by the bulk solution viscosity, except in situations where significant clustering of hydrophobic solute molecules occurs. In pure nonaqueous solvents the temperature dependence results are consistent with ÄJ being determined by the bulk viscosity, while in water or aqueous solutions, a very different behavior is found which is interpreted as a manifestation of clathrate-like hydration of the hydrophobic radical. This interpretation is incorporated in a two-state model developed to account for the WH data of TEMPO in aqueous solutions of various hydrophobic solutes. The equilibrium parameters derived from the model, for the association of TEMPO with several hydrophobic solutes, support the concept of hydrophobic interactions as pictured from thermodynamic excess functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Jolicoeur and H. L. Friedman,Ber. Bunsenges, Physik. Chem. 75, 248 (1971).

    Google Scholar 

  2. T. J. T. Buckman, P. L. Nordio, and H. M. McConnell,Proc. Nat. Acad. Sci. 54, 1010 (1965).

    Google Scholar 

  3. E. G. Rozantzev and M. B. Neiman,Tetrahedron 20, 131 (1964).

    Google Scholar 

  4. R. Brière, H. Lemaire, and A. Rassat,Bull, Soc. Chim. France, 3273 (1965).

  5. A. K. Hoffman,J. Am. Chem. Soc. 86, 641 (1964).

    Google Scholar 

  6. Handbook of Physics and Chemistry (The Chemical Rubber Co., Cleveland, 1963), 44th ed.

  7. H. L. Schläfer and W. Schaffernicht,Angew. Chem. 72, 618 (1960).

    Google Scholar 

  8. A. Hudson and H. A. Hussain,J. Chem. Soc. (B), 251 (1968).

  9. J. C. Espie, H. Lemaire, and A. Rassat,Bull. Soc. Chim. France, 399 (1969).

  10. R. Brière, H. Lemaire, A. Rassat, P. Rey, and A. Rousseau,Bull. Soc. Chim. France, 4479 (1967).

  11. R. W. Kreilick,J. Chem. Phys. 46, 4260 (1967).

    Google Scholar 

  12. L. Libertini and O. H. Griffith,J. Chem. Phys. 53, 1359 (1970).

    Google Scholar 

  13. G. Poggi and C. S. Johnson,J. Magnetic Res. 3, 436 (1970).

    Google Scholar 

  14. C. Jolicoeur and H. L. Friedman,J. Phys. Chem. 75, 165 (1971).

    Google Scholar 

  15. J. Oakes,Nature 231, 38 (1971).

    Google Scholar 

  16. D. Kivelson,J. Chem. Phys. 33, 1094 (1960).

    Google Scholar 

  17. P. W. Atkins and D. Kivelson,J. Chem. Phys. 44, 169 (1966); R. E. D. McClung and D. Kivelson,J. Chem. Phys. 49, 3380 (1968).

    Google Scholar 

  18. M. P. Eastman, Ph. D. thesis, Cornell University, New York, 1968.

  19. J. E. Desnoyers and M. Arel,Can. J. Chem. 45, 359 (1967).

    Google Scholar 

  20. H. L. Friedman,J. Phys. Chem. 71, 1723 (1967).

    Google Scholar 

  21. C. Jolicoeur, P. Philip, G. Perron, P. A. Leduc, and J. E. Desnoyers,Can. J. Chem. 50, 3167 (1972).

    Google Scholar 

  22. C. Jolicoeur, N. D. Thé, and A. Cabana,Can. J. Chem. 49, 2008 (1971).

    Google Scholar 

  23. J. J. Kozak, W. S. Knight, and W. Kauzmann,J. Chem. Phys. 48, 675 (1968).

    Google Scholar 

  24. H. S. Gutowsky, D. M. McCall, and C. P. S. Slichter,J. Chem. Phys. 30, 899 (1969).

    Google Scholar 

  25. A. Abragam,The Principles of Nuclear Magnetism (Oxford University Press, London, 1961), pp. 114, 115, 272.

    Google Scholar 

  26. Ibid., p. 300; see also refs. 16 and 17.

    Google Scholar 

  27. F. J. Millero, inWater and Aqueous Solutions, R. A. Horne, ed. (John Wiley and Sons, Inc. New York, 1972), p. 519.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jolicoeur, C., Friedman, H.L. Hydrophobic nitroxide radicals as probes to investigate the hydrophobic interaction. J Solution Chem 3, 15–43 (1974). https://doi.org/10.1007/BF00649494

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00649494

Key words

Navigation